5G無線增強設計與國際標準

5G無線增強設計與國際標準

《5G無線增強設計與國際標準》是2020年8月1日人民郵電出版社出版的圖書,由劉曉峰,沈祖康,王欣暉,魏貴明,高秋彬編寫。

基本介紹

  • 中文名:5G無線增強設計與國際標準
  • 作者:劉曉峰,沈祖康,王欣暉,魏貴明,高秋彬
  • 出版時間:2020年8月1日
  • 出版社:人民郵電出版社 
  • ISBN:9787115544032
內容簡介,圖書目錄,

內容簡介

5G無線增強設計與國際標準 主要介紹了5G無線增強技術及相應的國際標準化內容。其中,包括5G車聯網技術、5G非授 權接入技術、大規模天線增強技術、終端節能技術、超高可靠低時延(URLLC)技術、接入增強技術(包括非正交多址標準化過程的介紹)、多連線及載波聚合增強技術等。本書不僅對這些關鍵技術進行了介紹,還對這些技術的標準化過程及標準化方案進行了詳細分析。 本書適合從事移動通信研究的本科生及研究生、從事移動通信工作的工程師及希望了解5G相關情況的專業人士閱讀。

圖書目錄

第1章 5G無線增強設計概述
1.1 5G無線增強設計概覽 3
1.2 5G無線增強關鍵技術總體設計思路 4
第2章 接入增強
2.1 2步隨機接入 10
2.1.1 基本原理及套用場景 10
2.1.2 整體流程 12
2.1.3 MsgA PRACH 14
2.1.4 MsgA PUSCH 19
2.1.5 功率控制 23
2.1.6 MsgB設計 26
2.2 非正交多址 35
2.2.1 基於比特級處理的多址標識 38
2.2.2 基於符號級處理的多址標識 39
2.2.3 其他多址標籤設計 44
2.3 小結 46
第3章 增強多天線技術
3.1 增強信道狀態信息反饋 48
3.1.1 基本原理 48
3.1.2 碼本結構 49
3.1.3 碼本參數指示 52
3.1.4 CSI丟棄以及碼本子集約束 56
3.1.5 連線埠選擇碼本 59
3.1.6 UCI上報 59
3.2 增強波束管理 60
3.2.1 基本原理 60
3.2.2 降低開銷和時延 60
3.2.3 SCell波束失效恢復 65
3.2.4 L1-SINR 68
3.3 多點協作傳輸 68
3.3.1 基本原理 68
3.3.2 S-DCI方案 70
3.3.3 M-DCI方案 75
3.3.4 URLLC增強方案 78
3.4 上行滿功率傳送 82
3.4.1 基本原理 82
3.4.2 Mode 0方案 83
3.4.3 Mode 1方案 84
3.4.4 Mode 2方案 86
3.5 參考信號增強 87
3.5.1 基本原理 87
3.5.2 基於CP-OFDM波形的PDSCH/PUSCH的DMRS增強 87
3.5.3 基於DFT-s-OFDM波形的PUSCH/PUCCH的DMRS增強 88
3.6 小結 89
第4章 定位技術
4.1 概述 92
4.2 NR R16定位技術介紹 94
4.2.1 NR E-CID定位技術 94
4.2.2 NR DL-TDOA定位技術 95
4.2.3 NR UL-TDOA定位技術 96
4.2.4 NR Multi-RTT定位技術 98
4.2.5 NR DL-AoD定位技術 100
4.2.6 NR UL-AoA定位技術 101
4.2.7 NR RAT混合定位技術 101
4.3 定位測量值 102
4.3.1 UE定位測量值 102
4.3.2 基站定位測量值 105
4.3.3 定位測量值的取值範圍和解析度 107
4.3.4 定位測量值質量指示 107
4.4 下行定位參考信號 108
4.4.1 DL PRS設計 109
4.4.2 DL PRS配置 115
4.5 上行定位參考信號 119
4.5.1 上行定位參考信號設計 119
4.5.2 上行定位參考信號配置 124
4.6 物理層過程 126
4.6.1 下行物理層過程 126
4.6.2 上行物理層過程 129
4.7 定位協定架構和高層定位過程 133
4.7.1 定位架構 133
4.7.2 定位功能概述 136
4.7.3 定位過程 137
4.7.4 定位安全 139
4.7.5 廣播定位輔助數據 140
4.8 非RAT相關定位方法 143
4.8.1 概述 143
4.8.2 A-GNSS 143
4.8.3 大氣壓力感測器定位 144
4.8.4 WLAN定位 144
4.8.5 藍牙定位 144
4.8.6 TBS定位 145
4.8.7 慣導定位 145
4.9 定位性能 145
4.10 小結 147
第5章 終端節能技術
5.1 概述 150
5.2 技術原理 152
5.2.1 PDCCH監聽減少 152
5.2.2 時域自適應節能 155
5.2.3 頻域自適應節能 156
5.2.4 天線域自適應節能 157
5.2.5 無線資源管理測量節能 157
5.3 DRX最佳化 159
5.4 輔小區休眠行為 161
5.4.1 輔小區休眠行為引入 161
5.4.2 輔小區休眠行為狀態轉換 163
5.4.3 DRX激活期內輔小區休眠行為指示 163
5.5 節能信號設計 164
5.5.1 節能信號功能 165
5.5.2 節能信號傳輸信道 166
5.5.3 節能信號DCI格式 170
5.6 跨時隙調度節能技術 171
5.6.1 跨時隙調度節能技術原理 172
5.6.2 跨時隙調度節能技術流程 172
5.6.3 跨時隙調度節能方案指示 173
5.7 最大MIMO層數自適應節能技術 176
5.8 終端網路協同 177
5.8.1 釋放偏好上報 177
5.8.2 配置參數偏好上報 177
5.9 RRM測量放鬆 178
5.10 小結 179
第6章 V2X
6.1 NR V2X總體架構和設計 183
6.2 NR V2X同步機制 185
6.2.1 NR SLSS設計 185
6.2.2 NR S-SSB結構設計 186
6.2.3 NR PSBCH內容設計 187
6.2.4 S-SSB資源配置 189
6.2.5 Sidelink同步優先權設計 190
6.3 物理層結構 191
6.3.1 時頻結構 191
6.3.2 資源池配置 193
6.3.3 PSSCH 195
6.3.4 PSCCH 195
6.3.5 DMRS 198
6.3.6 PSFCH 199
6.3.7 AGC 201
6.4 物理層過程 201
6.4.1 HARQ過程 201
6.4.2 功率控制 206
6.4.3 CSI反饋 207
6.5 資源分配 208
6.5.1 模式2資源分配過程 208
6.5.2 模式1資源分配過程 212
6.6 小結 215
第7章 5G超高可靠低時延通信增強
7.1 5G超高可靠低時延通信增強綜述 218
7.2 5G URLLC R16標準化設計 220
7.2.1 物理下行控制信道增強 220
7.2.2 上行控制信息反饋增強 228
7.2.3 物理上行數據信道增強 231
7.2.4 上行免授權傳輸增強 239
7.2.5 下行半靜態調度增強 245
7.2.6 上行終端間復用 248
7.2.7 上行終端內不同業務復用 254
7.3 小結 258
第8章 接入回傳一體化(IAB)
8.1 概述 261
8.2 IAB網路架構及協定棧 261
8.2.1 網路架構 261
8.2.2 協定棧 265
8.3 物理層設計 269
8.3.1 IAB節點發現和測量 269
8.3.2 IAB節點隨機接入 271
8.3.3 IAB同步定時 273
8.3.4 IAB資源復用 275
8.4 IAB承載映射及路由 280
8.4.1 承載映射 280
8.4.2 路由 283
8.5 IAB拓撲管理 286
8.5.1 IAB節點啟動 286
8.5.2 IAB節點遷移 290
8.5.3 IAB節點無線鏈路失敗 292
8.6 其他 294
8.6.1 流控 294
8.6.2 低時延調度 296
8.6.3 LTE路徑傳輸F1-C數據 299
8.6.4 IP位址獲取 301
8.7 小結 302
第9章 5G免許可接入設計
9.1 5G免許可接入設計整體考慮 305
9.1.1 免許可頻段監管規則 305
9.1.2 免許可接入頻段及部署場景 306
9.1.3 免許可接入頻段物理層設計 307
9.2 免許可接入標準化設計 317
9.2.1 初始接入信道及信號設計 317
9.2.2 下行信道及信號設計 320
9.2.3 上行信道及信號設計 325
9.2.4 信道接入過程設計 328
9.2.5 初始接入過程增強 334
9.2.6 HARQ增強 335
9.2.7 預配置增強 339
9.2.8 大頻寬增強 341
9.3 小結 342
第10章 5G雙連線和載波聚合
10.1 背景 344
10.1.1 5G CA 344
10.1.2 5G MR-DC 345
10.1.3 MR-DC和NR CA增強的R16立項內容 345
10.2 NR CA增強 346
10.2.1 不同子載波間隔的跨載波調度/CSI-RS觸發 346
10.2.2 異步CA 349
10.2.3 減時延 350
10.3 MR-DC增強 354
10.3.1 NR-DC上行功率控制 354
10.3.2 上行傳輸增強 355
10.3.3 減時延 360
10.3.4 降開銷 366
10.4 小結 367
參考文獻

相關詞條

熱門詞條

聯絡我們