零基礎實踐深度學習(第二版)

《零基礎實踐深度學習(第二版)》是2022年清華大學出版社出版的圖書,作者是畢然、孫高峰、周湘陽、劉威威。

基本介紹

  • 書名:零基礎實踐深度學習(第二版)
  • 作者:畢然、孫高峰、周湘陽、劉威威
  • 出版社:清華大學出版社
  • 出版時間:2022年11月1日
  • 定價:168 元
  • ISBN:9787302618119
內容簡介,圖書目錄,

內容簡介

本書從人工智慧、機器學習和深度學習三者的關係開始,以深度學習在計算機視覺、自然語言處理和推薦系統的套用實踐為主線,逐步剖析模型原理和代碼實現。書中的內容深入淺出,通過原理與代碼結合、產業實踐和作業結合的方式,幫助讀者更好地掌握深度學習的理論知識和深度學習開源框架的使用方法。為了讓更多的讀者從中受益,快速應對複雜多變的AI套用,書中還 介紹了各種模型資源和輔助工具,旨在幫助讀者在人工智慧的戰場上和“AI大師”一樣無往不利。 人工智慧是一門跨學科的技術,本書既可作為深度學習的入門讀物,又可作為人工智慧或相關學科本科生和研究生的教材,還可供AI愛好者和從業者使用。

圖書目錄

第1章零基礎入門深度學習
1.1機器學習和深度學習綜述
1.1.1人工智慧、機器學習、深度學習的關係
1.1.2機器學習
1.1.3深度學習
1.2使用Python和NumPy構建神經網路模型
1.2.1波士頓房價預測任務
1.2.2構建波士頓房價預測任務的神經網路模型
1.3飛槳開源深度學習平台介紹
1.3.1深度學習框架
1.3.2飛槳產業級深度學習開源開放平台
1.4使用飛槳重寫房價預測模型
1.4.1飛槳設計之“道”
1.4.2使用飛槳實現波士頓房價預測任務
1.5NumPy介紹
1.5.1概述
1.5.2基礎數據類型: ndarray數組
1.5.3隨機數np.random
1.5.4線性代數
1.5.5NumPy保存和導入檔案
1.5.6NumPy套用舉例
1.5.7飛槳的張量表示
第2章一個示例帶你吃透深度學習
2.1使用飛槳完成手寫數字識別模型
2.1.1手寫數字識別任務
2.1.2構建手寫數字識別的神經網路模型
2.1.3模型代碼結構一致,大大降低了用戶的編碼難度
2.1.4採用“橫縱式”教學法,適合深度學習初學者
2.2通過極簡方案快速構建手寫數字識別模型
2.3手寫數字識別的數據處理
2.3.1概述
2.3.2數據讀取並劃分數據集
2.3.3訓練樣本亂序並生成批次數據
2.3.4校驗數據有效性
2.3.5封裝數據讀取與處理函式
2.3.6異步數據讀取
2.4手寫數字識別的網路結構
2.4.1概述
2.4.2經典的全連線神經網路
2.4.3卷積神經網路
2.5手寫數字識別的損失函式
2.5.1概述
2.5.2分類任務的損失函式
2.6手寫數字識別的最佳化算法
2.6.1概述
2.6.2設定學習率
2.6.3學習率的主流最佳化算法
2.7手寫數字識別的資源配置
2.7.1概述
2.7.2單GPU訓練
2.7.3分散式訓練
2.8手寫數字識別的訓練調試與最佳化
2.8.1概述
2.8.2計算模型的分類準確率
2.8.3檢查模型訓練過程,識別潛在訓練問題
2.8.4加入校驗或測試,更好地評價模型效果
2.8.5加入正則化項,避免模型過擬合
2.8.6可視化分析
2.9手寫數字識別的模型載入及恢復訓練
2.9.1概述
2.9.2恢復訓練
2.10手寫數字識別的動轉靜部署
2.10.1概述
2.10.2動態圖轉靜態圖訓練
2.10.3動態圖轉靜態圖模型保存
第3章計算機視覺
3.1卷積神經網路基礎
3.1.1概述
3.1.2卷積神經網路
3.2卷積神經網路的幾種常用操作
3.2.1概述
3.2.2池化
3.2.3ReLU激活函式
3.2.4批歸一化
3.2.5暫退法
3.3圖像分類
3.3.1概述
3.3.2LeNet
3.3.3AlexNet
3.3.4VGG
3.3.5GoogLeNet
3.3.6ResNet
3.3.7使用飛槳高層API直接調用圖像分類網路
第4章目標檢測YOLOv3
4.1目標檢測基礎概念
4.1.1概述
4.1.2目標檢測發展歷程
4.1.3目標檢測基礎概念
4.2目標檢測數據處理
4.3目標檢測的經典算法YOLOv3
4.3.1YOLOv3設計思想
4.3.2產生候選區域
4.3.3對候選區域進行標註
4.3.4圖像特徵提取
4.3.5計算預測框位置和類別
4.3.6定義損失函式
4.3.7多尺度檢測
4.3.8網路訓練
4.3.9模型預測
4.3.10模型效果可視化
4.4AI識蟲比賽
4.4.1AI識蟲比賽介紹
4.4.2實現參考
4.4.3更多思路參考
第5章自然語言處理
5.1自然語言處理綜述
5.1.1概述
5.1.2自然語言處理的發展歷程
5.1.3自然語言處理技術面臨的挑戰
5.1.4自然語言處理的常見任務
5.1.5使用深度學習解決自然語言處理任務的套路
5.2詞嵌入
5.2.1概述
5.2.2把詞轉換為向量
5.2.3讓向量具有語義信息
5.2.4CBOW和Skipgram的算法實現
5.3使用飛槳實現Skipgram
5.3.1數據處理
5.3.2網路定義
5.3.3網路訓練
5.3.4詞嵌入的有趣使用
第6章情感分析
6.1自然語言情感分析
6.1.1概述
6.1.2使用深度神經網路完成情感分析任務
6.2循環神經網路(RNN)和長短時記憶網路(LSTM)
6.2.1RNN和 LSTM 網路的設計思考
6.2.2RNN網路結構
6.2.3LSTM網路結構
6.3使用LSTM完成情感分析任務
6.3.1概述
6.3.2使用飛槳實現基於LSTM的情感分析模型
第7章推薦系統
7.1推薦系統介紹
7.1.1推薦系統產生的背景
7.1.2推薦系統的基本概念
7.1.3思考有哪些信息可以用於推薦
7.1.4使用飛槳探索電影推薦
7.2數據處理與讀取
7.2.1數據處理流程
7.2.2構建數據讀取器
7.3電影推薦模型設計
7.3.1模型設計介紹
7.3.2Embedding介紹
7.3.3電影特徵提取網路
7.3.4相似度計算
7.4模型訓練與保存特徵
7.4.1模型訓練
7.4.2保存特徵
7.5電影推薦
7.5.1根據用戶喜好推薦電影
7.5.2幾點思考收穫
7.5.3在工業實踐中的推薦系統
第8章精通深度學習的高級內容
8.1高級內容綜述
8.1.1為什麼要精通深度學習的高級內容
8.1.2高級內容包含哪些武器
8.2模型資源之一: 預訓練模型套用工具PaddleHub
8.2.1概述
8.2.2預訓練模型的套用背景
8.2.3快速入門PaddleHub
8.2.4PaddleHub提供的預訓練模型概覽
8.3模型資源之二: 飛槳產業級開源模型庫
8.3.1概述
8.3.2圖像分割開發套件PaddleSeg實戰
8.3.3自然語言處理開發庫PaddleNLP實戰
8.4飛槳產業級部署工具鏈
8.4.1概述
8.4.2AI晶片基礎和選型建議
8.4.3飛槳原生推理庫Paddle Inference
8.4.4飛槳端側輕量化推理引擎Paddle Lite
8.4.5飛槳模型壓縮工具PaddleSlim
8.5設計思想、靜態圖、動態圖和二次研發
8.5.1飛槳設計思想的核心概念
8.5.2飛槳聲明式編程(靜態圖)與命令式編程(動態圖)
8.5.3基於飛槳二次研發
8.6套用啟發: 行業套用與項目示例
8.6.1人工智慧在中國的發展和落地概況
8.6.2傳統行業AI套用空間
8.6.3項目示例: 飛槳助力國網山東進行輸電通道可視化巡檢
8.6.4飛槳產業實踐範例庫
後記

熱門詞條

聯絡我們