雙曲混沌(雙曲混沌:一個物理學家的觀點)

雙曲混沌

雙曲混沌:一個物理學家的觀點一般指本詞條

《雙曲混沌》是2011年9月1日,由高等教育出版社出版的圖書,作者是庫茲涅佐夫。本書講述了口前動力系統中均勻雙曲吸引子研究的進展,以及怎樣設計具有雙曲混沌的物理系統。

基本介紹

  • 書名:雙曲混沌
  • ISBN:9787040319644
  • 頁數:320頁
  • 出版社:高等教育出版社
  • 出版時間:2011年9月1日
  • 裝幀:平裝
  • 開本:16
  • 版次:1
內容簡介,作者簡介,目錄,

內容簡介

《雙曲混沌:一個物理學家的觀點(英文版)》從物理學而不是數學概念的角度介紹了結構穩定的口前動力系統中均勻雙曲吸引子研究的進展。吸引子表現出強烈的隨機性,但是對於動力系統中函式和參數的變化不敏感。基於雙曲混沌的特徵,《雙曲混沌:一個物理學家的觀點(英文版)》將展示如何找到物理系統中的雙曲混沌吸引子,以及怎樣設計具有雙曲混沌的物理系統。《雙曲混沌:一個物理學家的觀點(英文版)》可以作為研究生和高年級本科生教材,也可以供大學教授以及物理學、機械學和工程學相關研究人員參考。Kuznetsov博士是非線性和混沌動力學方面的著名科學家。他是俄羅斯薩拉托夫國立大學非線性過程系的教授,已經出版了三本混沌動力學及其套用方面的專著。
雙曲混沌雙曲混沌

作者簡介

作者:(俄羅斯)庫茲涅佐夫(SergeyP.Kuznetsov)叢書主編:羅朝俊(瑞典)伊布拉基莫夫(墨西哥)阿弗萊諾維奇

目錄

Part 1 Basic Notions and Review
Dynamical Systems and Hyperbolicity
1.1 Dynamical systems: basic notions
1.1.1 Systems with continuous and discrete time, and their mutual relation
1.1.2 Dynamics in terms of phase fluid: Conservative and dissipative systems and attractors
1.1.3 Rough systems and structural stability
1.1.4 Lyapunov exponents and their computation
1.2 Model examples of chaotic attractors
1.2.1 Chaos in terms of phase fluid and baker's map
1.2.2 Smale-Williams solenoid
1.2.3 DA-attractor
1.2.4 Plykin type attractors
1.3 Notion of hyperbolicity
1.4 Content and conclusions of the hyperbolic theory
1.4.1 Cone criterion.
1.4.2 Instability
1.4.3 Transversal Cantor structure and Kaplan-Yorke dimension
1.4.4 Markov partition and symbolic dynamics
1.4.5 Enumerating of orbits and topological entropy
1.4.6 Structural stability
1.4.7 Invariant measure of Sinai-Ruelle-Bowen
1.4.8 Shadowing and effect of noise
1.4.9 Ergodicity and mixing
1.4.10 Kolmogorov-Sinai entropy
References
2 Possible Occurrence of Hyperbolic Attractors
2.1 The Newhouse-Ruelle-Takens theorem and its relation to the uniformly hyperbolic attractors
2.2 Lorenz model and its modifications
2.3 Some maps with uniformly hyperbolic attractors
2.4 From DA to the Plykin type attractor
2.5 Hunt's example: Suspending the Plykin type attractor
2.6 The triple linkage: A mechanical system with hyperbolic dynamics
2.7 A possible occurrence of a Plykin type attractor in Hindmarsh-Rose neuron model
2.8 Blue sky catastrophe and birth of the Smale-Williams attractor
2.9 Taffy-pulling machine
References
Part 2 Low-Dimensional Models
Kicked Mechanical Models and Differential Equations with Periodic Switch
3.1 Smale-Williams solenoid in mechanical model: Motion of a particle on a plane under periodic kicks
3.2 A set of switching differential equations with attractor of Smale-Williams type
3.3 Explicit dynamical system with attractor of Plykin type
3.3.1 Plykin type attractor on a sphere
3.3.2 Plykin type attractor on the plane
3.4 Plykin-like attractor in smooth non-autonomous system
References
Non-Autonomous Systems of Coupled Serf-Oscillators
4.1 Van der Pol oscillator
4.2 Smale-Williams attractor in a non-autonomous system of alternately excited van der Pol oscillators
4.3 System of alternately excited van der Pol oscillators in terms of slow complex amplitudes
4.4 Non-resonance excitation transfer
4.5 Plykin-like attractor in non-autonomous coupled oscillators
4.5.1 Representation of states on a sphere and equations of the model
4.5.2 Numerical results for the coupled oscillators
References
5 Autonomous Low-dimensional Systems with Uniformly Hyperbolic
Attractors in the Poincar~ Maps
5.1 Autonomous system of two coupled oscillators with self-regulating alternating excitation
……
Part 3 Higher-Dimensional Systems and Phenomena
Part 4 Experimental Studies

相關詞條

熱門詞條

聯絡我們