陳焱山

陳焱山,男,博士南京師範大學副教授

基本介紹

  • 中文名:陳焱山
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:植物砷代謝的生化和分子機理
  • 任職院校:南京師範大學
個人經歷,研究方向,學術成果,

個人經歷

教育背景
2007.09-2013.12,中國科學院植物研究所,理學博士
2003.09-2007.06,北京林業大學,生物技術,理學學士
研究經歷
2019.02-至今,南京師範大學,環境學院,副教授
2016.01-2018.12,南京大學,環境學院,副研究員
2014.01-2015.12,南京大學,環境學院,博士後

研究方向

植物砷代謝的生化和分子機理
砷污染的植物修復
低砷水稻培育及食品安全

學術成果

承擔(參與)的主要科研項目
1. 國家自然科學基金青年項目(No: 21707068):蜈蚣草不同ACR3亞砷酸逆轉運蛋白的功能研究和比較,2018.01-2020.12,主持;
2. 國家重點研發計畫子課題(2016YFD080080102):蜈蚣草砷代謝關鍵基因克隆及轉基因工程植物培育,2016.01-2020.12,主持;
3. 江蘇自然科學基金青年項目(BK20160649):蜈蚣草關鍵砷外排基因的植物功能研究及其在降低糧食作物砷積累中的套用,2016.07-2019.06,主持;
4. 國家自然科學基金重點項目(21637002):土壤–水稻體系中砷遷移與阻控及其健康風險研究,2017.01-2021.12,參與;
近期發表論文(*通訊作者)
[1] Cao Y, Sun D, Chen JX, Mei H, Ai H, Xu G, Chen Y*, Ma LQ*. 2018. Phosphate transporter PvPht1;2 enhances phosphorus accumulation and plant growth without impacting arsenic uptake in plants. Environmental Science & Technology 52(7):3975-3981.
[2] Han YH, Jia MR, Liu X, Zhu Y, Cao Y, Chen DL, Chen Y*, Ma LQ. 2017. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. Chemosphere 186: 599-606.
[3] Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y*, Ma LQ. 2017. Knocking Out OsPT4 Gene Decreases Arsenate Uptake by Rice Plants and Inorganic Arsenic Accumulation in Rice Grains. Environmental Science & Technology 51(21): 12131-12138.
[4] Chen Y, Hua CY, Jia MR, Fu JW, Liu X, Han YH, Liu Y, Rathinasabapathi B, Cao Y*, Ma LQ. 2017. Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environmental Science & Technology 51(18): 10387-10395.
[5] Han YH, Liu X, Rathinasabapathi B, Li HB, Chen Y*, Ma LQ. 2017. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environmental Pollution 227: 569-577.
[6] Liu X, Fu JW, Tang N, da Silva EB, Cao Y, Turner BL, Chen Y*, Ma LQ. 2017. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environmental Pollution 226: 212-218.
[7] Li H, Dong X, da Silva EB, Chen Y*, Ma LQ*. 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178: 466-478.
[8] de Oliveira LM, Suchismita D, Gress J, Rathinasabapathi B, Chen Y*, Ma LQ*. 2017. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere 176: 249-254.
[9] Fu JW, Liu X, Han YH, Mei H, Cao Y, de Oliveira LM, Liu Y, Rathinasabapathi B, Chen Y*, Ma LQ. 2017. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. Journal of Hazardous Materials 330: 68-75.
[10] Liu X, Fu JW, Da Silva E, Shi XX, Cao Y, Rathinasabapathi B, Chen Y*, Ma LQ. 2017. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environmental Pollution 223: 230-237.
[11] Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ. 2017. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Frontiers in Plant Science 8(268).
[12] Han YH, Fu JW, Xiang P, Cao Y, Rathinasabapathi B, Chen Y*, Ma LQ*. 2017. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. Journal of Hazardous Materials 321: 146-153.
[13] Liu X, Fu JW, Guan DX, Cao Y, Luo J, Rathinasabapathi B, Chen Y*, Ma LQ*. 2016. Arsenic Induced Phytate Exudation, and Promoted FeAsO4 Dissolution and Plant Growth in As-Hyperaccumulator Pteris vittata. Environmental Science & Technology 50(17): 9070-9077.
[14] de Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y*, Ma LQ*. 2016. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147: 36-43.
[15] Chen Y, Fu JW, Han YH, Rathinasabapathi B, Ma LQ*. 2016. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere 144: 2189-2194.
[16] He Z, Yan H, Chen Y(Co-first author), Shen H, Xu W, Zhang H, Shi L, Zhu YG*, Ma M*. 2016. An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist 209(2): 746-761.
[17] Chen Y, Han YH, Rathinasabapathi B, Ma LQ. 2015. Naming and functions of ACR2, arsenate reductase, and ACR3 arsenite efflux transporter in plants (correspondence on: Kumar, S., Dubey, R.S., Tripathi, R.D., Chakrabarty, D., Trivedi, P.K., 2015. Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int. 74:221–230.). Environment International 81:98-99.
[18] Chen Y, Xu W(Co-first author), Shen H, Yan H, He Z, Ma M*. 2013. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environmental Science & Technology 47(16): 9355-9362.
著作章節
Chen Y, Cao Y, Rathinasabapathi B, Ma LQ. 2018. Book chapter: Novel Genes of Hyperaccumulator Ferns in Arsenic Tolerance, Uptake, and Metabolism: Implications for Crop Improvement. Springer Book: Current Advances in Fern Research, 978-3-319-75102-3, 447454_1_En, (17).

相關詞條

熱門詞條

聯絡我們