中山大學教授,主要教授凝聚態物理、理論物理,研究方向為相變動力學理論,強關聯體系相變
基本介紹
- 中文名:鐘凡
- 國籍:中國
- 職稱:教授
- 性別:男
簡介,教學情況,科研情況,承擔課題,論文,
簡介
學 位: 博士
所在學科 主要研究方向
所在學科:凝聚態物理、理論物理研究方向:相變動力學理論,強關聯體系相變
教學情況
本科:《熱力學統計物理》、《介觀物理》研究生:《凝聚態物理導論》、《凝聚態物理理論》、《相變理論》
科研情況
(1) 從實驗和理論上發現並提出一級相變對驅動相變的外場(含溫度)的線性變化速率的標度性和普適性,並在無窮分量模型中以重整化群理論給以證實,還研究了缺陷對標度性的影響,發現一級相變是由一不穩定不動點所控制,建立起一級相變動力學的重整化群理論,該理論將不動點的不穩定指數與滯後指數聯繫起來,結果與數值模擬相符合。(2) 將線性變場方法用於臨界點,獲得一個確定平衡和動態臨界指數及變場引起的滯後指數及其標度關係的方法。(3) 提出耦合相變理論,並在貝氏體相變、單層高分子膜的套用中獲得新的結果,有望解決貝氏體相變機制的古老課題。(4) 建立一個長波理論,解決了鐵碳馬氏體中碳原子有序化的基本問題。(5) 提出新的無序鐵磁近藤晶格模型,給出一種摻雜誘導金屬絕緣體轉變機制。(6) 建立錳氧化物的朗道對稱性相變理論,揭示澄清了其中各種複雜的相變現象。
承擔課題
國家傑出青年科學基金(2006)新世紀優秀人才支持計畫(2004)國家自然科學基金面上項目(2004)廣東省自然科學基金面上項目(2002)教育部優秀青年教師資助計畫(2001)優秀博士學位論文專項基金(2000)
論文
1. F. Zhong, X. Liu, J.X. Zhang, M.K. Kang, Z. Q. Guo, Lattice-parameter variation with carbon content of martensite. II. Long-wavelength theory of the cubic-to-tetragonal transition. Phys. Rev. B 1995. 52: 9979-87.
2. F. Zhong, J. Zhang, Renormalization Group Theory of Hysteresis. Phys. Rev. Lett. 1995. 75: 2027-30.
3. J. X. Zhang, F. Zhong, G.G. Siu, The scanning-rate dependence of energy dissipation in first-order phase transition of solids. Solid State Commun. 1996. 97: 847-50.
4. F. Zhong, X. Liu, J. Zhang, Theory of Coupled First-Order Phase Transformations: Application to Bainitic Transformations. Phys. Rev. Lett. 1996. 77: 1394-97.
5. F. Zhong, J. Dong, Z.D. Wang, Dynamical mean-field solution for a model of metal-insulator transitions in moderately doped manganites. Phys. Rev. B 1998. 58: 15310-13.
6. F. Zhong, J.M. Dong, D.Y. Xing, Scaling of Hysteresis in Pure and Disordered Ising Models: Comparison with Experiments. Phys. Rev. Lett. 1998. 80: 1118 (Comment).
7. F. Zhong, Z.D. Wang, Symmetry origin of the phase transitions and phase separation in manganites at low doping. Phys. Rev. B 1999. 60: 11883-6.
8. F. Zhong, M. Jiang, D.Y. Xing, J.M. Dong, Theory of coupled phase transitions: Phase separation and abnormal variation of order parameter. J. Chem. Phys. 2000. 113: 4465-8.
9. F. Zhong, Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model. Phys. Rev. B 2002. 66: 060401(R).
10. F. Zhong, Q.Z. Chen, Theory of the Dynamics of First-Order Phase Transitions: Unstable Fixed Points, Exponents, and Dynamical Scaling. Phys. Rev. Lett., 2005. 95: 175701.
11. S. Gong, F. Zhong, X. Huang, S. Fan, Finite-time scaling via linear driving. New J. Phys. 2010. 12: 043036.
12. F. Zhong, Finite-time Scaling and its Applications to Continuous Phase Transitions, in Applications of Monte Carlo Method in Science and Engineering, ed. S. Mordechai, 2011, Intech.
13. F. Zhong, Imaginary fixed points can be physical. Phys. Rev. E 2012. 86: 022104
2. F. Zhong, J. Zhang, Renormalization Group Theory of Hysteresis. Phys. Rev. Lett. 1995. 75: 2027-30.
3. J. X. Zhang, F. Zhong, G.G. Siu, The scanning-rate dependence of energy dissipation in first-order phase transition of solids. Solid State Commun. 1996. 97: 847-50.
4. F. Zhong, X. Liu, J. Zhang, Theory of Coupled First-Order Phase Transformations: Application to Bainitic Transformations. Phys. Rev. Lett. 1996. 77: 1394-97.
5. F. Zhong, J. Dong, Z.D. Wang, Dynamical mean-field solution for a model of metal-insulator transitions in moderately doped manganites. Phys. Rev. B 1998. 58: 15310-13.
6. F. Zhong, J.M. Dong, D.Y. Xing, Scaling of Hysteresis in Pure and Disordered Ising Models: Comparison with Experiments. Phys. Rev. Lett. 1998. 80: 1118 (Comment).
7. F. Zhong, Z.D. Wang, Symmetry origin of the phase transitions and phase separation in manganites at low doping. Phys. Rev. B 1999. 60: 11883-6.
8. F. Zhong, M. Jiang, D.Y. Xing, J.M. Dong, Theory of coupled phase transitions: Phase separation and abnormal variation of order parameter. J. Chem. Phys. 2000. 113: 4465-8.
9. F. Zhong, Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model. Phys. Rev. B 2002. 66: 060401(R).
10. F. Zhong, Q.Z. Chen, Theory of the Dynamics of First-Order Phase Transitions: Unstable Fixed Points, Exponents, and Dynamical Scaling. Phys. Rev. Lett., 2005. 95: 175701.
11. S. Gong, F. Zhong, X. Huang, S. Fan, Finite-time scaling via linear driving. New J. Phys. 2010. 12: 043036.
12. F. Zhong, Finite-time Scaling and its Applications to Continuous Phase Transitions, in Applications of Monte Carlo Method in Science and Engineering, ed. S. Mordechai, 2011, Intech.
13. F. Zhong, Imaginary fixed points can be physical. Phys. Rev. E 2012. 86: 022104