《超寬頻帶被動雷達尋的器測向技術》是2014年10月國防工業出版社出版的圖書,作者是司偉建、陳濤、林晴晴。
基本介紹
- 書名:超寬頻帶被動雷達尋的器測向技術
- 作者:司偉建
陳濤
林晴晴 - ISBN:978-7-118-09445-9
- 頁數:249
- 定價:88.00
- 出版社:國防工業出版社
- 出版時間:2014年10月
- 裝幀:精裝
- 開本:16
- 版次:1
內容簡介,圖書目錄,
內容簡介
全書由四章組成第1 章概述介紹了測向的目的、測向技術的分類和對測向系統的基本要求第2 章介紹了超寬頻帶天線技術第3 章介紹了立體基線的超寬頻帶被動雷達尋的器測向技術包括立體基線的測向原理、測向誤差最後進行了計算機仿真第4 章是陣列測向———空間譜估計高分辨、高精度測向介紹了空間譜估計技術的新技術、新方艱婆良法並進行了計算機仿真本書是國內被動雷達尋的器測向技術比較全面且比較新穎的一本專著可供從事雷達、通信與電子對抗等領域的廣大技術人員學習與參考也可以作紙祖膠漿為高等院校和科研院所通信與信息系統、信號處理等專業的研究生的教材或參考書
圖書目錄
第1章 緒論1
1.1 對輻射源測向的目的1
1.2 測向技術分類1
1.2.1 從時域上分類1
1.2.2 按到達角信息形成分類2
1.3 對測向系統的基本要求2
第2章 超寬頻帶天線技術4
2.1 概述4
2.2 圓柱螺旋天線5
2.2.1 圓柱螺旋天線的參數5
2.2.2 法向輻射的圓柱螺旋天線7
2.2.3 軸向輻射的圓柱螺旋天線8
2.3 螺旋天線14
2.4 錐形戒判籃四簽挨戒臂對數螺旋天線15
2.4.1 錐螺旋寬頻帶性能15
2.4.2 影響錐螺旋頻寬的主要因素勸疊微16
2.4.3 2~18GHz錐螺旋17
2.4.4 2~18GHz的錐螺旋天線實測性能19
2.5 雙模四臂螺旋天線21
2.5.1 輻射器21
2.5.2 波束形成網路23
2.6 雙臂平面螺旋天線25
2.6.1 平面螺旋天線的工作原理26
2.6.2 平面二次型螺旋天線27
2.7 2~100GHz平面螺旋天線28
2.8 曲折臂天線29
2.8.1 曲折臂天線的原理30
2.8.2 曲折臂天線的極化轉換結構31
2.8.3 曲折臂天線的簡化設計31
2.8.4 巴倫設計32
2.8.5 90°混合電路的設計33
2.8.6 單刀雙擲開關方案33
2.8.7 雙圓極化曲折臂天線的性能34
2.9 N臂(大於四臂)的曲折臂天線 34
2.10 超寬頻對數周期天線44
2.11 對數周期振子天線47
2.12 超寬頻對數周期貼片天線52
2.13 平面對數周期天線 53
2.14 對數周期振子天線55
2.14.1 天線的主要參數55
2.14.2 天線的設計56
2.14.3 對數周期振子天線的特點59
2.15 隙縫天線59
2.15.1 輻射特性63
2.15.2 槽線的激勵 64
2.16 漸變式微帶隙縫天線65
2.17 錐形隙縫天線66
2.18 寬頻圓極化平面螺旋與螺旋線天線67
第3章 基於立體基線的超寬頻帶被動雷達尋的器測向技術68
3.1 立體基再檔葛記線測向技術69
3.1.1 立體基線測向原理69
3.1.2 多值模糊問題及解決方法70
3.2 天線陣列模型及測向角度求解方法71
3.2.1 平面陣列天線模型71
3.2.2 立體陣列天線模型72
3.3 平面天線陣列的測向誤差74
3.3.1 立體基線算法測向誤差理論分析74
3.3.2 影響立體基線算法測向誤差的因素81
3.3.3 立體基線算法測向誤差仿真驗證87
3.4 立體天線陣列的測向誤差91
3.4.1 測向誤差理論推導91
3.4.2 測向誤差的影響因素99
3.4.3 測向誤差仿真驗證106
3.5 非均勻圓陣與均勻圓陣測向性能仿真分析110
3.5.1 仿真程式流程圖111
3.5.2 平面五元天線陣模型建立 111
3.5.3 計算機仿真112
3.5.4 存在通道不一致性測向性能仿真分析117
3.6 立體陣列和平面陣列測向性能仿真分析120
3.6.1 立體基線仿真流程及條件120
3.6.2 天線模型建立122
3.6.3 立體陣列與平面陣列測向性能仿真分析123
3.6.4 存在通道不一致性測向性能仿真分析128
第4章 陣列測向——空間譜估計高分辨、高精度測向131
4.1 概述131
4.1.1 理論基礎131
4.1.2 MUSIC算法的原理134
4.1.3 典型陣列形式及陣列流型矩陣137
4.1.4 幾個相關的概念140
4.2 色噪聲背景下的信源數估計方法141
4.2.1 引言141
4.2.2 基於資訊理論準則的信源數估計方法142
4.2.3 基於協方差矩陣對角載入的信源數估計方法147
4.2.4 基於蓋爾圓盤定理的信源數估計方法150
4.2.5 基於聚類分析的信源數估計新方法153
4.2.6 基於特徵子空間投影的信源數估計方法156
4.2.7 基於延時預處理的信源數估計方法158
4.2.8 計算機仿真與實測數據實驗162
4.3 陣列一階模糊問題研究170
4.3.1 陣列模糊問題描述170
4.3.2 平面陣的一階模糊問題研究171
4.3.3 仿真實驗173
4.4 基於MUSIC算法的二次搜尋解模糊方法175
4.4.1 二次搜尋法的基本原理175
4.4.2 二次搜尋角度區間的確定176
4.4.3 二次搜尋法的步驟和性能分析177
4.4.4 二次搜尋法與長短基線解模糊法比較178
4.4.5 虛擬陣列擴展解模糊方法178
4.4.6 計算機仿真實驗182
4.5 陣列結構性能185
4.5.1 引言185
4.5.2 基於微分幾何的陣列性能187
4.6 陣列誤差校正算法195
4.6.1 陣列天線通道不一致性校正的輔加陣元法195
4.6.2 基於遺傳算法的陣元位置誤差校正方法200
4.6.3 計算機仿真與實測數據實驗205
4.6.4 實測數據測試及結果分析210
4.7 寬頻相干信號測向技術211
4.7.1 概述211
4.7.2 寬頻信號陣列模型214
4.7.3 基於相干信號的處理方法217
4.7.4 二維寬頻相干信號快速測向算法220
4.7.5 仿真實驗221
4.8 基於陣列基線旋轉的MUSIC測向算法223
4.8.1 均勻圓陣下二維MUSIC算法224
4.8.2 基於陣列基線旋轉的MUSIC測向算法原理226
4.8.3 仿真實驗分析230
參考文獻241
Contents
Chapter 1 Introduction1
1.1 Purpose for direction finding1
1.2 Classification for direction finding technology1
1.2.1 Classification according to the time domain1
1.2.2 Classification according to the information of DOA2
1.3 Basic requirements for direction finding system2
Chapter 2 Ultra Wide Band (UWB )Antenna Technology4
2.1 Preface4
2.2 Cylinder helical antenna5
2.2.1 Parameters of cylinder helical antenna5
2.2.2 Normal radiation cylinder helical antenna7
2.2.3 Axial radiation cylinder helical antenna8
2.3 Helical antenna14
2.4 Tapered quadrifilar log periodic helix antenna15
2.4.1 Property of tapered helical wide band15
2.4.2 Major influence factors of tapered helical band16
2.4.3 2~18GHz tapered helix antenna17
2.4.4 Measured performance of 2~18GHz tapered helix antenna19
2.5 Dual mode antenna quadrifilar helix antenna21
2.5.1 Radiator21
2.5.2 Beam-former23
2.6 Two-arm broadband spiral antenna25
2.6.1 Operating principle of broadband spiral antenna26
2.6.2 Broadband quadratic form spiral antenna27
2.7 2~100GHz broadband spiral antenna28
2.8 Zigzag arm antenna29
2.8.1 Principle of zigzag arm antenna30
2.8.2 Polarization switching structure of zigzag arm antenna31
2.8.3 Simplified design of zigzag arm antenna31
2.8.4 Balun Design32
2.8.5 Design of 90°hybrid circuit33
2.8.6 Scheme of single-pole double-throw (SPDT)33
2.8.7 Performance of circularly polarized antenna34
2.9 N-arm(more than four) zigzag arm antenna34
2.10 UWB log-periodic antenna44
2.11 Log-periodic dipole antenna47
2.12 UWB log-periodic patch antenna52
2.13 Planar log-periodic antenna53
2.14 Parameters and design of log-periodic dipole antenna55
2.14.1 Major parameters of antenna55
2.14.2 Accurate design56
2.14.3 Characteristic of log-periodic dipole antenna59
2.15 Slot antenna59
2.15.1 Radiation characteristic63
2.15.2 Motivation of slot liner64
2.16 Graded-Index micro-strip slot antenna65
2.17 Taper slot antenna66
2.18 Wideband circular polarization plane helix and
helical antenna(AS-48611)67
Chapter 3 Spatial Baseline Direction Finding Technology
of UWB Passive Radar Seeker68
3.1 Spatial baseline technology69
3.1.1 Principle of spatial baseline69
3.1.2 Multiple-value problem and solution70
3.2 Antenna array model and direction angle calculation method71
3.2.1 Planar array antenna model71
3.2.2 Stereoscopic array antenna model72
3.3 Direction finding error of plane antenna array74
3.3.1 Theory analysis of direction finding error of
spatial baseline algorithm74
3.3.2 Main factors affect on spatial baseline algorithm81
3.3.3 Simulation of direction finding error of
spatial baseline algorithm87
3.4 Direction finding error of spatial antenna array91
3.4.1 Theoretical derivation of direction finding error91
3.4.2 Influencing factor of Direction finding error99
3.4.3 Computer simulation106
3.5 Simulation analysis for direction finding performance of
non uniform circular array and uniform circular array110
3.5.1 Flow block diagram of simulated program111
3.5.2 Model building of plane array with five antennas111
3.5.3 Computer simulation112
3.5.4 Direction finding performance simulation with channel
inconsistency117
3.6 Direction finding performance simulation analysis
of solid array and planar array120
3.6.1 Simulation process and conditions of spatial baseline120
3.6.2 Antenna model122
3.6.3 Computer simulation123
3.6.4 Direction finding performance simulation with channel
inconsistency128
Chapter 4 Array Direction Finding-High Resolution, High Accuracy
Direction-Finding by Spatial Spectrum Estimation131
4.1 Summarize131
4.1.1 Theoretical basis131
4.1.2 Principle of MUSIC algorithm134
4.1.3 Typical array form and array flow matrix137
4.1.4 Several related concepts140
4.2 Source number estimation method at colored noise background141
4.2.1 Introduction141
4.2.2 Source number estimation method based on Akaike information
criterion142
4.2.3 Source number estimation method based on covariance matrix
diagonal loading147
4.2.4 Source number estimation method based on
Gerschgorin’s disk theorem150
4.2.5 Source number estimation method based on clustering analysis153
4.2.6 Source number estimation method based on feature subspace
projection156
4.2.7 Source number estimation method based on delay pretreatment158
4.2.8 Computer simulation and measured data experiment162
4.3 Research on first-order ambiguity of array170
4.3.1 Problem description of array ambiguity170
4.3.2 Research on first-order ambiguity of plane array171
4.3.3 Computer simulation173
4.4 Ambiguity solving method by secondary search based
on MUSIC algorithm175
4.4.1 Principle of secondary search method175
4.4.2 Determination of angle interval of secondary search method176
4.4.3 Steps and performance analysis of secondary search method177
4.4.4 Comparison of secondary search method and
long-short base line178
4.4.5 Ambiguity solving method of virtual array expansion178
4.4.6 Computer simulation182
4.5 Performance of array structure185
4.5.1 Introduction185
4.5.2 Array performance based on differential geometry187
4.6 Array error correction algorithm195
4.6.1 Additional array element method for array channel
inconsistency correction195
4.6.2 Array element location error correction algorithm based
on genetic algorithm200
4.6.3 Computer simulation and measured data experiment205
4.6.4 Measured data test and result analysis210
4.7 Wide band coherent signal direction finding technology211
4.7.1 Summarize211
4.7.2 Wide band signal array model214
4.7.3 Processing method for coherent signal217
4.7.4 Fast direction finding algorithm for two dimensional wide band
coherent signal220
4.7.5 Computer simulation221
4.8 MUSIC algorithm for array baseline rotation223
4.8.1 Two dimension MUSIC algorithm under uniform circular array224
4.8.2 Principle of MUSIC algorithm for array baseline rotation226
4.8.3 Computer simulation230
Reference241"
2.18 寬頻圓極化平面螺旋與螺旋線天線67
第3章 基於立體基線的超寬頻帶被動雷達尋的器測向技術68
3.1 立體基線測向技術69
3.1.1 立體基線測向原理69
3.1.2 多值模糊問題及解決方法70
3.2 天線陣列模型及測向角度求解方法71
3.2.1 平面陣列天線模型71
3.2.2 立體陣列天線模型72
3.3 平面天線陣列的測向誤差74
3.3.1 立體基線算法測向誤差理論分析74
3.3.2 影響立體基線算法測向誤差的因素81
3.3.3 立體基線算法測向誤差仿真驗證87
3.4 立體天線陣列的測向誤差91
3.4.1 測向誤差理論推導91
3.4.2 測向誤差的影響因素99
3.4.3 測向誤差仿真驗證106
3.5 非均勻圓陣與均勻圓陣測向性能仿真分析110
3.5.1 仿真程式流程圖111
3.5.2 平面五元天線陣模型建立 111
3.5.3 計算機仿真112
3.5.4 存在通道不一致性測向性能仿真分析117
3.6 立體陣列和平面陣列測向性能仿真分析120
3.6.1 立體基線仿真流程及條件120
3.6.2 天線模型建立122
3.6.3 立體陣列與平面陣列測向性能仿真分析123
3.6.4 存在通道不一致性測向性能仿真分析128
第4章 陣列測向——空間譜估計高分辨、高精度測向131
4.1 概述131
4.1.1 理論基礎131
4.1.2 MUSIC算法的原理134
4.1.3 典型陣列形式及陣列流型矩陣137
4.1.4 幾個相關的概念140
4.2 色噪聲背景下的信源數估計方法141
4.2.1 引言141
4.2.2 基於資訊理論準則的信源數估計方法142
4.2.3 基於協方差矩陣對角載入的信源數估計方法147
4.2.4 基於蓋爾圓盤定理的信源數估計方法150
4.2.5 基於聚類分析的信源數估計新方法153
4.2.6 基於特徵子空間投影的信源數估計方法156
4.2.7 基於延時預處理的信源數估計方法158
4.2.8 計算機仿真與實測數據實驗162
4.3 陣列一階模糊問題研究170
4.3.1 陣列模糊問題描述170
4.3.2 平面陣的一階模糊問題研究171
4.3.3 仿真實驗173
4.4 基於MUSIC算法的二次搜尋解模糊方法175
4.4.1 二次搜尋法的基本原理175
4.4.2 二次搜尋角度區間的確定176
4.4.3 二次搜尋法的步驟和性能分析177
4.4.4 二次搜尋法與長短基線解模糊法比較178
4.4.5 虛擬陣列擴展解模糊方法178
4.4.6 計算機仿真實驗182
4.5 陣列結構性能185
4.5.1 引言185
4.5.2 基於微分幾何的陣列性能187
4.6 陣列誤差校正算法195
4.6.1 陣列天線通道不一致性校正的輔加陣元法195
4.6.2 基於遺傳算法的陣元位置誤差校正方法200
4.6.3 計算機仿真與實測數據實驗205
4.6.4 實測數據測試及結果分析210
4.7 寬頻相干信號測向技術211
4.7.1 概述211
4.7.2 寬頻信號陣列模型214
4.7.3 基於相干信號的處理方法217
4.7.4 二維寬頻相干信號快速測向算法220
4.7.5 仿真實驗221
4.8 基於陣列基線旋轉的MUSIC測向算法223
4.8.1 均勻圓陣下二維MUSIC算法224
4.8.2 基於陣列基線旋轉的MUSIC測向算法原理226
4.8.3 仿真實驗分析230
參考文獻241
Contents
Chapter 1 Introduction1
1.1 Purpose for direction finding1
1.2 Classification for direction finding technology1
1.2.1 Classification according to the time domain1
1.2.2 Classification according to the information of DOA2
1.3 Basic requirements for direction finding system2
Chapter 2 Ultra Wide Band (UWB )Antenna Technology4
2.1 Preface4
2.2 Cylinder helical antenna5
2.2.1 Parameters of cylinder helical antenna5
2.2.2 Normal radiation cylinder helical antenna7
2.2.3 Axial radiation cylinder helical antenna8
2.3 Helical antenna14
2.4 Tapered quadrifilar log periodic helix antenna15
2.4.1 Property of tapered helical wide band15
2.4.2 Major influence factors of tapered helical band16
2.4.3 2~18GHz tapered helix antenna17
2.4.4 Measured performance of 2~18GHz tapered helix antenna19
2.5 Dual mode antenna quadrifilar helix antenna21
2.5.1 Radiator21
2.5.2 Beam-former23
2.6 Two-arm broadband spiral antenna25
2.6.1 Operating principle of broadband spiral antenna26
2.6.2 Broadband quadratic form spiral antenna27
2.7 2~100GHz broadband spiral antenna28
2.8 Zigzag arm antenna29
2.8.1 Principle of zigzag arm antenna30
2.8.2 Polarization switching structure of zigzag arm antenna31
2.8.3 Simplified design of zigzag arm antenna31
2.8.4 Balun Design32
2.8.5 Design of 90°hybrid circuit33
2.8.6 Scheme of single-pole double-throw (SPDT)33
2.8.7 Performance of circularly polarized antenna34
2.9 N-arm(more than four) zigzag arm antenna34
2.10 UWB log-periodic antenna44
2.11 Log-periodic dipole antenna47
2.12 UWB log-periodic patch antenna52
2.13 Planar log-periodic antenna53
2.14 Parameters and design of log-periodic dipole antenna55
2.14.1 Major parameters of antenna55
2.14.2 Accurate design56
2.14.3 Characteristic of log-periodic dipole antenna59
2.15 Slot antenna59
2.15.1 Radiation characteristic63
2.15.2 Motivation of slot liner64
2.16 Graded-Index micro-strip slot antenna65
2.17 Taper slot antenna66
2.18 Wideband circular polarization plane helix and
helical antenna(AS-48611)67
Chapter 3 Spatial Baseline Direction Finding Technology
of UWB Passive Radar Seeker68
3.1 Spatial baseline technology69
3.1.1 Principle of spatial baseline69
3.1.2 Multiple-value problem and solution70
3.2 Antenna array model and direction angle calculation method71
3.2.1 Planar array antenna model71
3.2.2 Stereoscopic array antenna model72
3.3 Direction finding error of plane antenna array74
3.3.1 Theory analysis of direction finding error of
spatial baseline algorithm74
3.3.2 Main factors affect on spatial baseline algorithm81
3.3.3 Simulation of direction finding error of
spatial baseline algorithm87
3.4 Direction finding error of spatial antenna array91
3.4.1 Theoretical derivation of direction finding error91
3.4.2 Influencing factor of Direction finding error99
3.4.3 Computer simulation106
3.5 Simulation analysis for direction finding performance of
non uniform circular array and uniform circular array110
3.5.1 Flow block diagram of simulated program111
3.5.2 Model building of plane array with five antennas111
3.5.3 Computer simulation112
3.5.4 Direction finding performance simulation with channel
inconsistency117
3.6 Direction finding performance simulation analysis
of solid array and planar array120
3.6.1 Simulation process and conditions of spatial baseline120
3.6.2 Antenna model122
3.6.3 Computer simulation123
3.6.4 Direction finding performance simulation with channel
inconsistency128
Chapter 4 Array Direction Finding-High Resolution, High Accuracy
Direction-Finding by Spatial Spectrum Estimation131
4.1 Summarize131
4.1.1 Theoretical basis131
4.1.2 Principle of MUSIC algorithm134
4.1.3 Typical array form and array flow matrix137
4.1.4 Several related concepts140
4.2 Source number estimation method at colored noise background141
4.2.1 Introduction141
4.2.2 Source number estimation method based on Akaike information
criterion142
4.2.3 Source number estimation method based on covariance matrix
diagonal loading147
4.2.4 Source number estimation method based on
Gerschgorin’s disk theorem150
4.2.5 Source number estimation method based on clustering analysis153
4.2.6 Source number estimation method based on feature subspace
projection156
4.2.7 Source number estimation method based on delay pretreatment158
4.2.8 Computer simulation and measured data experiment162
4.3 Research on first-order ambiguity of array170
4.3.1 Problem description of array ambiguity170
4.3.2 Research on first-order ambiguity of plane array171
4.3.3 Computer simulation173
4.4 Ambiguity solving method by secondary search based
on MUSIC algorithm175
4.4.1 Principle of secondary search method175
4.4.2 Determination of angle interval of secondary search method176
4.4.3 Steps and performance analysis of secondary search method177
4.4.4 Comparison of secondary search method and
long-short base line178
4.4.5 Ambiguity solving method of virtual array expansion178
4.4.6 Computer simulation182
4.5 Performance of array structure185
4.5.1 Introduction185
4.5.2 Array performance based on differential geometry187
4.6 Array error correction algorithm195
4.6.1 Additional array element method for array channel
inconsistency correction195
4.6.2 Array element location error correction algorithm based
on genetic algorithm200
4.6.3 Computer simulation and measured data experiment205
4.6.4 Measured data test and result analysis210
4.7 Wide band coherent signal direction finding technology211
4.7.1 Summarize211
4.7.2 Wide band signal array model214
4.7.3 Processing method for coherent signal217
4.7.4 Fast direction finding algorithm for two dimensional wide band
coherent signal220
4.7.5 Computer simulation221
4.8 MUSIC algorithm for array baseline rotation223
4.8.1 Two dimension MUSIC algorithm under uniform circular array224
4.8.2 Principle of MUSIC algorithm for array baseline rotation226
4.8.3 Computer simulation230
Reference241"