基本介紹
- 中文名:赤池信息量準則
- 外文名:Akaike information criterion
- 創造者:赤池弘次
- 性質:統計學
準則介紹,AICc和AICu,QAIC,
準則介紹
在一般的情況下,AIC可以表示為:
AIC=(2k-2L)/n
它的假設條件是模型的誤差服從獨立常態分配。
其中:k是所擬合模型中參數的數量,L是對數似然值,n是觀測值數目。
AIC的大小取決於L和k。k取值越小,AIC越小;L取值越大,AIC值越小。k小意味著模型簡潔,L大意味著模型精確。因此AIC和修正的決定係數類似,在評價模型是兼顧了簡潔性和精確性。
具體到,L=-(n/2)*ln(2*pi)-(n/2)*ln(sse/n)-n/2.其中n為樣本量,sse為殘差平方和
表明增加自由參數的數目提高了擬合的優良性,AIC鼓勵數據擬合的優良性但是儘量避免出現過度擬合(Overfitting)的情況。所以優先考慮的模型應是AIC值最小的那一個。赤池信息準則的方法是尋找可以最好地解釋數據但包含最少自由參數的模型。
AICc和AICu
在樣本小的情況下,AIC轉變為AICc:
AICc=AIC+[2k(k+1)/(n-k-1)]
當n增加時,AICc收斂成AIC。所以AICc可以套用在任何樣本大小的情況下(Burnham and Anderson, 2004)。
McQuarrie 和 Tsai(1998: 22)把AICc定義為:
AICc=ln(RSS/n)+(n+k)/(n-k-2),
他們提出的另一個緊密相關指標為AICu:
AICu=ln[RSS/(n-k)]+(n+k)/(n-k-2).
QAIC
QAIC(Quasi-AIC)可以定義為:
QAIC=2k-1/c*2lnL
在小樣本情況下, QAIC表示為:
QAICc=QAIC+2k(2k+1)/(n-k-1).