內容簡介
《套用統計學叢書·結構方程仔局模膠跨紋型:Mplus與套用(英文版)》以通俗易懂的方式系統地闡述結構方程模型的基本概念和統計原理,戀員立重側重各種結構方程模型的實際套用。《套用統計學叢書·結構方程模型:Mplus與套用(英文版)》採用國際店糠喇著名SEM軟體Mplus,使用真實數據來演示各種常見的以及某些新近發展起來的較高級的結構方程模型,提供相應的Mplus程式,並詳細解讀程式輸出結果。參照《套用統計學叢書·結構方程模型:Mplus與套用(英文版)》提供的例題和相應的電腦程式,讀者便希故祝能自己實踐各種SEM模型。本書可作為大學社會科學及公共衛生學院墊霸棗頌研究生以及統計和生物統計專業本科生教材充姜乘,也可作為相關學科的研究人員從事統計分析的工具書。
教材目錄
1 Introduction
1.1 Modelformulation
1.1.1 Measurement model
1.1.2 Structuralmodel
1.1.3 Model formulation in equations
1.2 Modelidentification
1.3 Modelestimation
1.4 Modelevaluation
1.5 Modelmodification
1.6 Computer programs for SEM
Appendix 1.A Expressing variances and covariances among observed variables as functions of model parameters
Appendix 1.B Maximum likelihood function for SEM
2 Confirmatory factor analysis
2.1 Basics ofCFA model
2.2 CFA model with continuous indicators
2.3 CFA model with non-normal and censoredcontinuous indicators
2.3.1 Testingnon-normality
2.3.2 CFA model with non-normalindicators
2.3.3 CFA model with censored data
2.4 CFA model with categoricalindicators
2.4.1 CFAmodelwithbinaryindicators '
2.4.2 CFA model with ordered categoricalindicators
2.5 Higher order CFA model
Appendix 2.A BSI-18 instrument
Appendix 2.B Item reliability
Appendix 2.C Cronbach's alpha coefficient
Appendix 2.D Calculating probabilities using PROBIT regression Coefficients
3 Structuralequations withlatent variables
3.1 MIMIC model
3.2 Structuralequationmodel
3.3 Correcting for measurement errorsin single indicator variables
3.4 Testinginteractionsinvolvinglatentvariables
Appendix 3.A Influence of measurement errors
4 Latent growth models for longitudinal data analysis
4.1 LinearLGM
4.2 NonlinearLGM
4.3 Multi-processLGM
4.4 Two-partLGM
4.5 LGM with categoricaloutcomes
5 Multi-groupmodeling
5.1 Multi-group CFA model
5.1.1 Multi-group first-order CFA
5.1.2 Multi-group second-order CFA
5.2 Multi-group SEM model
5.3 Multi-groupLGM
6 Mixturemodeling
6.1 LCAmodel
6.1.1 ExampleofLCA
6.1.2 Example of LCA model with covariates
6.2 LTAmodel
6.2.1 ExampleofLTA
6.3 Growth mixture model
6.3.1 Example of GMM
6.4 Factor mixture model
Appendix 6.A Including covariate in the LTA model
7 Sample size for structural equation modeling
7.1 The rules of thumb for sample size needed for SEM
7.2 Satorra and Saris's method for sample size estimation
7.2.1 Application of Satorra and Saris's method to CFA model
7.2.2 Application of Satorra and Saris's method to LGM
7.3 Monte Carlo simulation for sample size estimation
7.3.1 Application ofMonte Carlo simulation to CFA model
7.3.2 Application of Monte Carlo simulation to LGM
……
References
Index
2.5 Higher order CFA model
Appendix 2.A BSI-18 instrument
Appendix 2.B Item reliability
Appendix 2.C Cronbach's alpha coefficient
Appendix 2.D Calculating probabilities using PROBIT regression Coefficients
3 Structuralequations withlatent variables
3.1 MIMIC model
3.2 Structuralequationmodel
3.3 Correcting for measurement errorsin single indicator variables
3.4 Testinginteractionsinvolvinglatentvariables
Appendix 3.A Influence of measurement errors
4 Latent growth models for longitudinal data analysis
4.1 LinearLGM
4.2 NonlinearLGM
4.3 Multi-processLGM
4.4 Two-partLGM
4.5 LGM with categoricaloutcomes
5 Multi-groupmodeling
5.1 Multi-group CFA model
5.1.1 Multi-group first-order CFA
5.1.2 Multi-group second-order CFA
5.2 Multi-group SEM model
5.3 Multi-groupLGM
6 Mixturemodeling
6.1 LCAmodel
6.1.1 ExampleofLCA
6.1.2 Example of LCA model with covariates
6.2 LTAmodel
6.2.1 ExampleofLTA
6.3 Growth mixture model
6.3.1 Example of GMM
6.4 Factor mixture model
Appendix 6.A Including covariate in the LTA model
7 Sample size for structural equation modeling
7.1 The rules of thumb for sample size needed for SEM
7.2 Satorra and Saris's method for sample size estimation
7.2.1 Application of Satorra and Saris's method to CFA model
7.2.2 Application of Satorra and Saris's method to LGM
7.3 Monte Carlo simulation for sample size estimation
7.3.1 Application ofMonte Carlo simulation to CFA model
7.3.2 Application of Monte Carlo simulation to LGM
……
References
Index