《算法技術手冊》是2009年東南大學出版社出版的圖書,作者是海涅曼波利切塞克歐。本書主要介紹了解決多種程式語言中可用的有效代碼解決方案。
基本介紹
- 書名:算法技術手冊
- 作者:海涅曼 波利切 塞克歐
- ISBN:9787564116323
- 定價: 58.00 元
- 出版社:東南大學出版社
- 出版時間:2009年04月
- 開本:16開
內容簡介,作者簡介,圖書目錄,
內容簡介
創造穩定的軟體需要有效的算法,但是程式設計者愉臘促們很少戶翻嫌少能在問題出凝催辣現之前就想到。《算法技術手冊(影印版)》描述了現有紙白符的可以解決多種問題的算法,並且能夠幫助你根據需求選擇並實現正確的算法——只需要一定的數學知識即可理解並分析算法執行。相對於理論來說,本書更注重實際運用,書中提供了多種程式語言中可用的有效代碼解決方案,可輕而易舉地適合一個特定的項目。有了這本書,你可以:
解決特定編碼問題或改進現有解決方案的執行;
迅速確定膠拳與需要解決的問題相關的算法,並判定為什麼這樣的寒組厚辣算法是正確的;
了解一個算法預期的執行情況及最佳的執行條件;
發現不狼婆碑同算法中相似設計產生的衝突;
學習先進的數據結構以改進算法效率。
有了《算法技術手冊》,你可以學習如何改進算法的性能,這是軟體套用成功的關鍵。
作者簡介
George THeineman,Gary Pollice和Stanley Selkow均為 Woree ste r PolYteChniC In stitute(伍斯特理工學院)計算機科學系的教授。George是《Component—B ased Software Engineering:Putting the Pieces Together》(Addison—Wesley(的合編者,Gary則是《Head First Object-Oriented Analysis and Design》(O'Reilly)的合著者。
圖書目錄
Part 1
1 Algorithms Matter
Understand the Problem
Experiment if Necessary
Algorithms to the Rescue
Side Story
The Moral of the Story
References
2The Mathematics of Algorithms
Size of a Problem Instance
Rate of Growth of Functions
Analysis in the Best, Average, and Worst Cases.
Performance Families
Mix of Operations
Benchmark Operatxons
One Final Point
References
3Patterns and Domains
Patterns: A Communication Language
Algorithm Pattern Format
Pseudocode Pattern Format
Design Format
Empirical Evaluation Format
Domains and Algorithms
Floating-Point Computations
Manual Memory Allocation
Choosing a Programming Language
References
Part 2
4Sorting Algorithms
Overview
Insertion Sort
Median Sort
Quicksort
Selection Sort
Heap Sort
Counting Sort
Bucket Sort
Criteria for Choosing a Sorting Algorithm
References
5Searching
Overview
Sequential Search
Binary Search
Hash-based Search
Binary Tree Search
6 GraphAIgorithms
Overview
Depth-First Search
Breadth-First Search
Single-Source Shortest Path
All Pairs Shortest Path
Minimum Spanning Tree Algorithms
References
7 Path Finding in AI
Overview
Depth-First Search
Breadth-First Search
A'Search
Comparison
Minimax
NegMax
AlphaBeta
References
8Network Flow Algorithms
Overview
Maximum Flow
Bipartite Matching
Reflections on Augmenting Paths
Minimum Cost Flow
Transshipment
Transportation
Assignment
Linear Programming
References
9 Computational Geometry
Overview
Convex Hull Scan
LineSweep
Nearest Neighbor Queries
Range Queries
References
Part 3
10When All Else Fails
Variations on a Theme
Approximation Algorithms
Offline Algorithms
Parallel Algorithms
Randomized Algorithms
Algorithms That Can Be Wrong, but with Diminishing Probability References
11Epilogue
Overview
Principle: Know Your Data
Principle: Decompose the Problem into Smaller Problems
Principle: Choose the Right Data Structure
Principle: Add Storage to Increase Performance
Principle: If No Solution Is Evident, Construct a Search
Principle: If No Solution Is Evident, Reduce Your Problem to
Another Problem That Has a Solution
Principle: Writing Algorithms Is Hard——Testing Algorithms Is Harder
Part 4
Appendix: Benchmarking
Index
……
Pseudocode Pattern Format
Design Format
Empirical Evaluation Format
Domains and Algorithms
Floating-Point Computations
Manual Memory Allocation
Choosing a Programming Language
References
Part 2
4Sorting Algorithms
Overview
Insertion Sort
Median Sort
Quicksort
Selection Sort
Heap Sort
Counting Sort
Bucket Sort
Criteria for Choosing a Sorting Algorithm
References
5Searching
Overview
Sequential Search
Binary Search
Hash-based Search
Binary Tree Search
6 GraphAIgorithms
Overview
Depth-First Search
Breadth-First Search
Single-Source Shortest Path
All Pairs Shortest Path
Minimum Spanning Tree Algorithms
References
7 Path Finding in AI
Overview
Depth-First Search
Breadth-First Search
A'Search
Comparison
Minimax
NegMax
AlphaBeta
References
8Network Flow Algorithms
Overview
Maximum Flow
Bipartite Matching
Reflections on Augmenting Paths
Minimum Cost Flow
Transshipment
Transportation
Assignment
Linear Programming
References
9 Computational Geometry
Overview
Convex Hull Scan
LineSweep
Nearest Neighbor Queries
Range Queries
References
Part 3
10When All Else Fails
Variations on a Theme
Approximation Algorithms
Offline Algorithms
Parallel Algorithms
Randomized Algorithms
Algorithms That Can Be Wrong, but with Diminishing Probability References
11Epilogue
Overview
Principle: Know Your Data
Principle: Decompose the Problem into Smaller Problems
Principle: Choose the Right Data Structure
Principle: Add Storage to Increase Performance
Principle: If No Solution Is Evident, Construct a Search
Principle: If No Solution Is Evident, Reduce Your Problem to
Another Problem That Has a Solution
Principle: Writing Algorithms Is Hard——Testing Algorithms Is Harder
Part 4
Appendix: Benchmarking
Index
……