《煤體瓦斯熱力學》是科學出版社出版的一本圖書,作者是馮增朝,周動,趙東
基本介紹
- 書名:煤體瓦斯熱力學
- 作者:馮增朝、周動、趙東
- 出版社:科學出版社
- ISBN:9787030636317
內容簡介,圖書目錄,作者簡介,
內容簡介
本書詳細地闡述了煤體與甲烷相互作用的熱量變化物理機制,以及溫度對煤體中甲烷解吸及運移的控制機制。本書分為相對獨立的上下兩篇。上篇主要講述煤體與甲烷的熱物理作用,包括吸附熱理論、煤的非均勻勢阱理論及基於紅外熱成像的煤中甲烷富集的分形規律;下篇主要講述溫度與水對煤吸附特性的影響規律,以及溫度和應力共同作用下煤體中氣液兩相流動規律
圖書目錄
前言
第一章 煤體瓦斯熱力學引論 1
1.1 煤體瓦斯熱力學的基本概念 1
1.2 煤體瓦斯熱力學研究構架 2
參考文獻 5
上篇 煤體與甲烷的熱物理作用
第二章 甲烷分子間的相互作用及凝聚現象 9
2.1 分子間的相互作用 9
2.1.1 甲烷的分子結構特徵 9
2.1.2 分子間作用力 9
2.1.3 幾種常用的勢能模型 11
2.1.4 系綜理論 16
2.2 氣-液凝聚現象 19
2.2.1 范德瓦耳斯方程對理想氣體方程的修正 20
2.2.2 范德瓦耳斯方程的統計力學解釋 22
2.2.3 其他狀態方程 26
2.2.4 等溫線 26
2.2.5 臨界現象 29
2.3 凝聚熱理論計算 31
2.3.1 克勞修斯-克拉珀龍方程 31
2.3.2 范德瓦耳斯方程常數得到的凝聚熱 32
參考文獻 33
第三章 煤與甲烷的吸附現象及吸附熱 36
3.1 煤體的基本特性 36
3.1.1 煤的分子結構特徵 36
3.1.2 煤體的孔隙與裂隙結構特徵 37
3.1.3 煤體表面特徵 44
3.2 固-氣吸附現象 46
3.2.1 朗繆爾方程——單分子層吸附 47
3.2.2 BET方程—多分子層吸附 56
3.2.3 吸附等溫線 58
3.2.4 固-氣吸附的影響因素 62
3.3 吸附熱理論 63
3.3.1 等量吸附熱 64
3.3.2 吸附勢理論 65
3.3.3 兩能態簡化模型 67
3.3.4 朗繆爾單分子層統計力學模型 70
3.3.5 模型之間的聯繫和區別 73
3.3.6 化學勢對吸附熱的影響 76
參考文獻 77
第四章 煤的非均勻勢阱吸附甲烷規律 79
4.1 煤的非均勻勢阱吸附甲烷理論模型 79
4.2 煤的非均勻勢阱吸附甲烷特徵實驗研究 81
4.2.1 非均勻勢阱煤體吸附甲烷規律 82
4.2.2 溫度與吸附壓力對煤與甲烷吸附熱的影響 83
4.3 基於吸附動力學的煤非均勻勢阱吸附甲烷特徵數值模擬 86
4.3.1 煤與甲烷模型建立與吸附過程數值模擬 86
4.3.2 非均勻勢阱的等溫吸附特徵 88
4.3.3 非均勻勢阱的等壓吸附特徵 90
4.3.4 覆蓋率對壓力與溫度的敏感性 92
4.3.5 煤與甲烷非均勻勢阱等溫吸附方程 93
4.4 非均勻勢阱煤體的甲烷吸附量計算方法 95
4.4.1 非均勻勢阱煤體的等溫甲烷吸附過程中朗繆爾參數a與b的變化規律 95
4.4.2 朗繆爾方法與非均勻勢阱煤體的甲烷吸附量計算精度 98
4.5 甲烷分子在孔喉空間的通過性 102
4.5.1 甲烷在孔喉空間的勢能 103
4.5.2 含微孔孔喉的阻塞孔特性 107
4.5.3 甲烷分子在微孔孔喉通過性的影響因素 108
4.6 微孔孔喉對甲烷吸附/解吸動力學特性的影響 110
4.6.1 含孔喉結構微孔解吸甲烷的數值模型 110
4.6.2 微孔孔喉對甲烷解吸動力學特性的影響 111
4.6.3 微孔孔喉對甲烷解吸滯後特徵的影響 114
參考文獻 115
第五章 煤體細觀結構吸附甲烷特徵 117
5.1 煤體細觀結構的觀測研究 117
5.1.1 材料的細觀結構及其研究方法 117
5.1.2 煤樣製備與SEM-EDS測試 119
5.1.3 煤樣CT與表面層提取方法 120
5.2 煤岩細觀結構特徵與分類 122
5.2.1 煤岩SEM-EDS特徵及其分類 122
5.2.2 基於EDS面掃描的煤細觀結構定量化描述 126
5.2.3 基於CT掃描煤岩密度分布特徵 132
5.3 煤體細觀結構吸附/解吸甲烷溫度變化規律 132
5.3.1 煤吸附/解吸甲烷紅外熱成像實驗研究 132
5.3.2 煤吸附/解吸甲烷溫度變化的非均勻特徵 134
5.3.3 煤不同細觀結構溫度變化特徵 138
5.4 甲烷在煤體細觀結構的分布與演化 142
5.4.1 煤中不同細觀結構的非均勻勢阱分布特徵 142
5.4.2 煤中甲烷分布特徵隨吸附壓力變化規律 144
5.4.3 煤中甲烷富集區域分布的分形特徵 147
參考文獻 150
下篇 熱與水作用下煤體中甲烷運移
第六章 高溫條件下煤吸附/解吸甲烷特性實驗 153
6.1 高溫吸附/解吸的實驗 153
6.1.1 高溫吸附實驗裝置 153
6.1.2 試樣的選取和加工 155
6.1.3 高溫吸附/解吸實驗 155
6.2 煤體高溫吸附/解吸甲烷的特徵 157
6.2.1 定壓、定容解吸特性分析 157
6.2.2 溫度、壓力共同作用的煤體解吸甲烷機制 162
6.2.3 定容、定壓吸附特性分析 164
6.2.4 等溫吸附特性分析 166
6.3 結合吸附理論對結果的綜合分析討論 168
6.3.1 吸附模型的確定 168
6.3.2 吸附參數a、b的分析和討論 169
6.3.3 溫度單一因素對吸附參數a、b的影響 170
參考文獻 170
第七章 水作用下高溫煤體解吸甲烷的特性 172
7.1 水作用下高溫吸附/解吸實驗 172
7.1.1 含水煤高溫吸附實驗裝置 172
7.1.2 含水煤高溫吸附實驗介紹 175
7.2 水作用下高溫解吸實驗結果 175
7.2.1 實驗數據和參數的定義 175
7.2.2 瓦斯解吸率隨溫度的變化規律 176
7.2.3 試樣累計解吸率隨溫度的變化 179
7.3 水作用下甲烷高溫解吸特性 179
7.3.1 溫度對煤體解吸性的影響及規律 179
7.3.2 多種煤層氣開採方案的效率對比 181
7.4 含水煤體定容吸附實驗 182
7.4.1 實驗樣品、裝置及實驗過程 182
7.4.2 吸附速率和吸附能力分析 183
7.4.3 預先水作用的煤體吸附性討論 187
7.4.4 煤體預先含水吸附的微觀機制研究 188
參考文獻 190
第八章 煤層氣氣液兩相流動界面模型及滲流 191
8.1 氣液兩相流動界面理論 191
8.2 氣液兩相流動界面模型 194
8.2.1 不計壓縮性兩相驅替界面模型 194
8.2.2 壓縮性兩相驅替界面模型 196
8.2.3 擬壓力函式方程驅替界面模型 200
8.3 氣液兩相流動界面模型驗證 203
8.3.1 非穩態氣水兩相流實驗 203
8.3.2 不計壓縮性兩相驅替界面模型數值模擬 207
8.3.3 壓縮性兩相驅替界面模型數值模擬 211
8.3.4 擬壓力函式方程驅替界面模型數值模擬 215
參考文獻 220
第九章 溫度應力作用下煤體氣液兩相流動 221
9.1 溫度控制下氣液兩相流實驗 221
9.1.1 氣液兩相流實驗設備及試件 221
9.1.2 氣液兩相流實驗方案與步驟 222
9.2 溫度對氣液兩相滲流過程的影響 223
9.2.1 溫度對產液階段的影響 223
9.2.2 溫度對氣液兩相滲流各階段的影響 224
9.3 溫度作用下氣液兩相流體滲流規律 228
9.3.1 溫度對單相流體滲流影響 228
9.3.2 溫度對氣液兩相相對滲透率的影響 232
9.4 溫度及應力作用下氣液兩相流變化規律 234
9.5 氣液兩相產出過程溫度敏感性分析 235
參考文獻 237
CONTENTS
Preface
Chapter 1 Introduction 1
1.1 The Concept of Thermodynamics of Gas in Coal 1
1.2 The Research Content and Method of Thermodynamics of Gas in Coal 2
Reference 5
Section Ⅰ:Thermophysical Interaction between Coal and Methane
Chapter 2 Interactions and Condensation in Methane Molecules 9
2.1 Intermolecular Interaction 9
2.1.1 The Molecular Structure of Methane 9
2.1.2 Intermolecular Force 9
2.1.3 Several Commonly Used Potential Energy Models 11
2.1.4 The Theory of Statistical Ensemble 16
2.2 The Phenomenon of Gas-Liquid Condensation 19
2.2.1 The Modification of van der Waals Equation to the Ideal Gas Equation 20
2.2.2 Explain with the Statistical Mechanics of van der Waals Equation 22
2.2.3 The Others State Equations 26
2.2.4 Isotherm 26
2.2.5 Critical Phenomenon 29
2.3 The Theoretical Calculation of Condensation Heat 31
2.3.1 The Equation of Benoit Pierre Emile Clapeyron 31
2.3.2 Condensation Heat form van der Waals Equation 32
Reference 33
Chapter 3 The Adsorption’s Phenomenon and Heat in Coal and Methane 36
3.1 The Characteristics of Coal 36
3.1.1 Molecular Structure of Coal 36
3.1.2 Structural Characteristics of Coal Pores and Fractures 37
3.1.3 The Surface’s Features of Coal 44
3.2 The Phenomenon of Adsorption in Solid-Gas 46
3.2.1 Langmuir Equation-Monolayer Adsorption 47
3.2.2 BET Equation-Multilayer Adsorption 56
3.2.3 The Isotherm of Adsorption 58
3.2.4 Factors of Affecting Adsorption in Solid-Gas 62
3.3 The Theory of Adsorption Heat 63
3.3.1 Heat of Equal Adsorption 64
3.3.2 The Theory of Adsorption Potential 65
3.3.3 The Simplified Model of Two-Energy State 67
3.3.4 Langmuir Statistical Model of Single Molecular Layer 70
3.3.5 Connections and Differences between Models 73
3.3.6 Effect of Chemical Potential on Adsorption Heat 76
Reference 77
Chapter 4 Adsorption of Methane on Coal Non-Uniform Potential Wells 79
4.1 Theoretical Model of Methane Adsorption by Heterogeneous Potential Well in Coal 79
4.2 Experimental Study on Characteristics of Methane Adsorption by Non-Uniform Potential Wells in Coal 81
4.2.1 Regularity of Methane Adsorption by Non-Uniform Potential Well in Coal 82
4.2.2 Effect of Temperature and Adsorption Pressure on Adsorption Heat of Coal and Methane 83
4.3 Numerical Simulation of Methane Adsorption Characteristics of Coal Non-Uniform Potential Wells Based on Adsorption Kinetics 86
4.3.1 Modeling of Coal and Methane and Numerical Simulation of Adsorption Process 86
4.3.2 Isothermal Adsorption Characteristics of Non-Uniform Potential Wells 88
4.3.3 Isobaric Adsorption Characteristics of Non-Uniform Potential Wells 90
4.3.4 The Sensitivity of Coverage to Pressure and Temperature 92
4.3.5 Isothermal Adsorption Equation of Coal and Methane Non-Uniform Potential Well 94
4.4 Calculation Method of Methane Adsorption in Non-Uniform Potential Well Coal 95
4.4.1 Variations of Langmuir Parameters a and b During Isothermal Methane Adsorption in Heterogeneous Potential Well Coals 95
4.4.2 Langmuir Method and Calculation Accuracy of Methane Adsorption Amount in Coal Body with Non-Uniform Potential Well 98
4.5 Passability of Methane Molecules in Pore Throat Space 102
4.5.1 Potential Energy of Methane in Pore Throat Space 103
4.5.2 Characteristics of Blocked Pores with Microporous Larynx 107
4.5.3 Factors Affecting the Permeability of Methane Molecules in Microporous Pore Throat 108
4.6 Effect of Microporous Pore Throat on Kinetic Characteristics of Methane Adsorption and Desorption 110
4.6.1 Numerical Model of Micropore Desorption of Pore Throat Structure 110
4.6.2 Effect of Microporous Pore Throat on Kinetic Characteristics of Methane Desorption 111
4.6.3 Influence of Microporous Pore Throat on Hysteresis Characteristics of Methane Desorption 114
Reference 115
Chapter 5 Characteristics of Adsorption of Methane on the Meso-Structure of Coal 117
5.1 Observation and Research on the Meso-Structure of Coal 117
5.1.1 Microstructure of Materials and Their Research Methods 117
5.1.2 The Preparation of Coal Sample and SEM-EDS Test 119
5.1.3 Methods of CT Scanning and Surface Layer Extraction of Coal Samples 120
5.2 Meso-Structural Characteristics and Classification of Coal 122
5.2.1 Characteristics and Classification of SEM-EDS of Coal 122
5.2.2 Quantitative Description of Coal Mesostructure Based on EDS Surface Scanning 126
5.2.3 Density Distribution Characteristics of Coal Based on CT Scanning 132
5.3 Temperature Variation of Mesostructure Adsorption / Desorption of Coal 132
5.3.1 Infrared Thermal Imaging Test of Coal Adsorption / Desorption of Methane 132
5.3.2 Non-Uniform Characteristics of Temperature Change of Coal Adsorption / Desorption Methane 134
5.3.3 Temperature Characteristics of Different Meso-Structures of Coal 138
5.4 Distribution and Evolution of Mesostructure of Methane in Coal 142
5.4.1 Distribution Characteristics of Non-Uniform Potential Wells with Different Mesostructures in Coal 142
5.4.2 The Distribution of Methane in Coal Varies with the Pressure of Adsorption 144
5.4.3 Fractal Characteristics of the Regional Distribution of Methane Enrichment in Coal 147
Reference 150
SectionⅡ:Methane Transport in Coal under Heat and Water
Chapter 6 Test of Methane Adsorption-Desorption Characteristics of Coal with High Temperature 153
6.1 Test of High Temperature Adsorption / Desorption 153
6.1.1 The Device of High-Temperature Adsorption 153
6.1.2 Selection and Processing of Samples 155
6.1.3 Test of High Temperature Adsorption / Desorption 155
6.2 Characteristics of Methane Adsorption / Desorption at High Temperature of Coal 157
6.2.1 Analysis of Constant Pressure and Constant Volume Desorption Characteristics 157
6.2.2 Mechanism of Methane Desorption from Coal under Temperature and Pressure 162
6.2.3 Analysis of Constant Volume and Constant Pressure Adsorption Characteristics 164
6.2.4 Analysis of Isothermal Adsorption Characteristics 166
6.3 Comprehensive Analysis and Discussion of the Results in Combination with Adsorption Theory 168
6.3.1 Determination of Adsorption Model 168
6.3.2 Analysis and Discussion of Adsorption Parameters a, b 169
6.3.3 The Influence of Temperature Single Factor on Adsorption Parameters a, b 170
Reference 170
Chapter 7 Test of Coal Adsorption-Desorption Methane Characteristics with Water and Temperature 172
7.1 Test of Water Injection (Water-Containing) High Temperature Adsorption 172
7.1.1 The Device of High-Temperature (Water-Containing) and High- Pressure Adsorption Experimental 172
7.1.2 Explanation of Conditions for Adsorption Test 175
7.2 Results of High Temperature Desorption Experiments under the Action of Water 175
7.2.1 Definition of Experimental Data and Parameters 175
7.2.2 Law of Gas Desorption Rate with Temperature 176
7.2.3 The Change of the Cumulative Desorption Rate of the Sample with Temperature 179
7.3 Desorption Characteristics of Methane under the Action of Water in High Temperature 179
7.3.1 The Influence of Temperature on the Desorption Property of Coal and Its Regularity 179
7.3.2 Efficiency Comparison of Various Coalbed Methane Exploitation Schemes 181
7.4 Constant Volume Adsorption Experiment of Water-Containing Coal 182
7.4.1 Description of Experimental Samples, Devices and Processes 182
7.4.2 Analysis of Adsorption Rate and Capacity 183
7.4.3 Discussion on the Adsorption of Coal by Pre-Water Effect 187
7.4.4 Study on the Micro-Mechanism of Absorption in Water-Containing Coal 188
Reference 190
Chapter 8 CBM Two-Phase of Gas-Liquid Flow Interface Model and Percolation 191
8.1 Theory of Two-Phase of Gas-Liquid Flow Interface 191
8.2 Two-Phase of Gas-Liquid Flow Interface Model 194
8.2.1 Excluding Compressive Two-Phase Displacement Interface Model 194
8.2.2 Compressive Two-Phase Displacement Interface Model 196
8.2.3 The Quasi-Pressure Function Equation Displaces the Interface Model 200
8.3 Model Verification of Two-Phase of Gas-Liquid Flow Interface 203
8.3.1 The Experiment of Unsteady Gas-Water Two-Phase Flow 203
8.3.2 Numerical Simulation of Two-Phase Displacement Interface Model Excluding Compressibility 207
8.3.3 Numerical Simulation of Compressive Two-Phase Displacement Interface Model 211
8.3.4 Numerical Simulation of Quasi-Pressure Function Equation Displacing Interface Model 215
Reference 220
Chapter 9 Two-Phase of Gas-Liquid Flow under Thermal and Stress in Coal 221
9.1 Two-Phase of Gas-Liquid Flow Experiment under Temperature 221
9.1.1 Two-Phase of Gas-Liquid Flow Experimental Equipment and Test Pieces 221
9.1.2 Experimental Scheme and Steps of Two-Phase of Gas-Liquid Flow 222
9.2 Effect of Temperature on Two-Phase of Gas-Liquid Percolation Process 223
9.2.1 Effect of Temperature on the Liquid-Producing Stage 223
9.2.2 Effect of Temperature on Each Phase of Two-Phase of Gas-Liquid Percolation 224
9.3 Percolation of Two-Phase of Gas-Liquid under the Action of Temperature 228
9.3.1 Effect of Temperature on Percolation of Single-Phase Fluid 228
9.3.2 Influence of Temperature on the Relative Permeability of Two-Phase of Gas-Liquid 232
9.4 Variation of Two-Phase of Gas-Liquid Flow under the Action of Temperature and Stress 234
9.5 Temperature Sensitivity Analysis of Two-Phase of Gas-Liquid Production Process 235
Reference 237