《汽車傳動系的非線性估計與控制(英文版)》首先介紹了汽車傳動系和非線性控制理論的基礎知識和發展現狀。在分析了各種自動變速器的形式和控制特點之後,闡述了適合車輛傳動控制的非線性控制方法。繼而針對廣泛套用於轎車的液力式自動變速器AT(AutomaticTransmission)和雙離合器自動變速器DCT(DualClutchTransmission)以及廣泛套用於卡車的機械式自動變速器AMT(AutomatedManualTransmission),套用構造性非線性控制(如Backstepping,Input-to-StateStable)和模型預測控制(ModelPredictiveControl)等先進控制理論,詳細討論了車輛動力傳動系的力矩估計和換檔控制等系統的設計,在理論分析的基礎上給出估計器和控制器參數選取的指導性原則,並針對具體的例子給出了在ASMEsim中的仿真分析。
基本介紹
- 書名:汽車傳動系的非線性估計與控制
- 作者:陳虹 高炳釗
- 出版日期:2014年3月24日
- 語種:英語
- 品牌:科學出版社
- 外文名:Nonlinear Estimation and Control of Automotive Drivetrains
- 出版社:科學出版社
- 頁數:264頁
- 開本:16
- ISBN:7030388879
內容簡介,圖書目錄,
內容簡介
Hong Chen、Bingzhao Gao編著的《汽車傳動系的非線性估計與控制(英文版)(精)》首先介紹了汽車傳動系和非線性控制理論的基礎知識和發展現狀。在分析了各種自動變速器的形式和控制特點之後,闡述了適合車輛傳動控制的非線性控制方法。繼而針對廣泛套用於轎車的液力式自動變速器AT(AutomaticTransmission)和雙離合器自動變速器DCT(DualClutchTransmission)以及廣泛套用於卡車的機械式自動變速器AMT(AutomatedManualTransmission),套用構造性非線性控制(如Backstepping,Input-to-StateStable)和模型預測控制(ModelPredictiveControl)等先進控制理論,詳細討論了車輛動力傳動系的力矩估計和換檔控制等系統的設計,在理論分析的基礎上給出估計器和控制器參數選取的指導性原則,並針對具體的例子給出了在ASMEsim中的仿真分析。
圖書目錄
1 Introduction
1.1 Introduction of Automotive Drivetrain
1.1.1 Engine
1.1.2 Clutch/Torque Converter
1.1.3 Transmissions
1.1.4 Propeller Shaft and Differential Gear Box
1.1.5 Drive Axle Shaft
1.1.6 Tires and Vehicle
1.2 Overview of Automotive Transmissions
1.2.1 Hydraulic Automatic Transmission (AT)
1.2.2 Automated Manual Transmission (AMT)
1.2.3 Dual Clutch Transmission (DCT)
1.2.4 Continuously Variable Transmission (CVT)
1.2.5 Final Remark
1.3 Why Consider Model-Based Control?
1.3.1 Evolution of Control Systems for Automotive Powertrains
1.3.2 Introduction of Model-Based Design
1.3.3 Application Examples of Model-Based Control
1.4 Why Consider Nonlinear Control?
1.4.1 Necessity of Nonlinear Control
1.4.2 State-of-the-Art of Applied Nonlinear Control
1.5 Structure of the Text
References
2 Pressure Estimation of a Wet Clutch
2.1 Introduction
2.2 Description and Modeling of a Powertrain System
2.3 Clutch Pressure Estimation Without Consideration of Drive Shaft Stiffness
2.3.1 Clutch System Modeling and Problem Statement
2.3.2 Reduced-Order Nonlinear State Observer
2.3.3 Simulation Results
2.3.4 Design of Full-Order Sliding Mode Observer and Comparison
2.4 Clutch Pressure Estimation when Considering Drive Shaft Stiffness
2.4.1 Clutch System Modeling when Considering the Drive Shaft
2.4.2 Design of Reduced-Order Nonlinear State Observer
2.4.3 Simulation Results
2.5 Notes and References
References
3 Torque Phase Control of the Clutch-to-Clutch Shift Process
3.1 Introduction
3.2 Motivation of Clutch Timing Control
3.3 Clutch Control Strategy
3.4 Simulation Results
3.4.1 Powertrain Simulation Model
3.4.2 Simulation Results
3.5 Notes and References
References
4 Inertia Phase Control of the Clutch-to-Clutch Shift Process
4.1 Introduction
4.2 Two-Degree-of-Freedom Linear Controller
4.2.1 Controller Design
4.2.2 Simulation Results
4.3 Nonlinear Feedback-Feedforward Controller
4.3.1 Clutch Slip Controller
4.3.2 Simulation Results
4.4 Backstepping Controller
4.4.1 Nonlinear Controller with ISS Property
4.4.2 Implementation Issues
4.4.3 Controller of the Considered Clutch System
4.4.4 Simulation Results
4.5 Backstepping Controller for DCTs
4.5.1 System Modeling and Problem Statement
4.5.2 Controller Design
4.5.3 Simulation Results
4.6 Notes and References
References
5 Torque Estimation of the Vehicle Drive Shaft
5.1 Introduction
5.2 Driveline Modeling and Problem Statement
5.2.1 Driveline Modeling
5.2.2 Estimation Problem Statement
5.3 Reduced-Order Nonlinear Shaft Torque Observer
5.3.1 Structure of the Observer
5.3.2 Properties of the Error Dynamics
5.3.3 Guideline of Choosing Tuning Parameters
5.3.4 Observer Design for Considered Vehicle
5.4 Simulation Results
5.4.1 Powertrain Simulation Model
5.4.2 Simulation Results
5.5 Notes and References
References
6 Clutch Disengagement Timing Control of AMT Gear Shift
6.1 Introduction
6.2 Observer-Based Clutch Disengagement Timing Control
6.3 Clutch Disengagement Strategy
6.4 Simulation Results
6.4.1 Simulation Results with Constant Observer Gain
6.4.2 Simulation Results with Switched Observer Gains
6.5 Notes and References
References
7 Clutch Engagement Control of AMT Gear Shift
7.1 Introduction
7.2 Power-On Upshift of AMT
7.2.1 Dynamics and Control Strategy
7.2.2 Simulation Results
7.3 Power-On Downshift of AMT
7.3.1 Dynamic Process of Power-On Downshift
7.3.2 Control Problem Descriptioh
7.3.3 Controller Design of Torque Recovery Phase
7.3.4 Simulation Results
7.4 Notes and References
References
8 Data-Driven Start-Up Control of AMT Vehicle
8.1 Introduction
8.2 Control Requirements
8.3 Data-Driven Start-Up Predictive Controller of AMT Vehicle
8.3.1 Subspace Linear Predictor
8.3.2 Data-Driven Start-Up Predictor
8.3.3 Predictive Output Equation
8.3.4 Data-Driven Predictive Controller Without Constraints
8.3.5 Data-Driven Predictive Controller with Constraints
8.4 Simulation Results
8.4.1 Controller Test Under Nominal Conditions
8.4.2 Controller Test Under Changed Conditions
8.5 Notes and References
References
Appendix A Lyapunov Stability
References
Appendix B Input-to-State Stability (ISS)
B.1 Comparison Functions
B.2 Input-to-State Stability
B.2.1 Useful Lemmas
References
Appendix C Backstepping
C.1 About CLF
C.2 Backstepping Design
C.3 Adaptive Backstepping
References
Appendix D Model Predictive Control (MPC)
D.1 Linear MPC
D.2 Nonlinear MPC (NMPC)
D.2.1 NMPC Based on Discrete-Time Model
D.2.2 NMPC Based on Continuous-Time Model
References
Appendix E Linear Matrix Inequality (LMI)
E.1 Convexity
E.2 Linear Matrix Inequalities
E.3 Casting Problems in an LMIs Setting
References
Appendix F Subspace Linear Predictor
References
1.1 Introduction of Automotive Drivetrain
1.1.1 Engine
1.1.2 Clutch/Torque Converter
1.1.3 Transmissions
1.1.4 Propeller Shaft and Differential Gear Box
1.1.5 Drive Axle Shaft
1.1.6 Tires and Vehicle
1.2 Overview of Automotive Transmissions
1.2.1 Hydraulic Automatic Transmission (AT)
1.2.2 Automated Manual Transmission (AMT)
1.2.3 Dual Clutch Transmission (DCT)
1.2.4 Continuously Variable Transmission (CVT)
1.2.5 Final Remark
1.3 Why Consider Model-Based Control?
1.3.1 Evolution of Control Systems for Automotive Powertrains
1.3.2 Introduction of Model-Based Design
1.3.3 Application Examples of Model-Based Control
1.4 Why Consider Nonlinear Control?
1.4.1 Necessity of Nonlinear Control
1.4.2 State-of-the-Art of Applied Nonlinear Control
1.5 Structure of the Text
References
2 Pressure Estimation of a Wet Clutch
2.1 Introduction
2.2 Description and Modeling of a Powertrain System
2.3 Clutch Pressure Estimation Without Consideration of Drive Shaft Stiffness
2.3.1 Clutch System Modeling and Problem Statement
2.3.2 Reduced-Order Nonlinear State Observer
2.3.3 Simulation Results
2.3.4 Design of Full-Order Sliding Mode Observer and Comparison
2.4 Clutch Pressure Estimation when Considering Drive Shaft Stiffness
2.4.1 Clutch System Modeling when Considering the Drive Shaft
2.4.2 Design of Reduced-Order Nonlinear State Observer
2.4.3 Simulation Results
2.5 Notes and References
References
3 Torque Phase Control of the Clutch-to-Clutch Shift Process
3.1 Introduction
3.2 Motivation of Clutch Timing Control
3.3 Clutch Control Strategy
3.4 Simulation Results
3.4.1 Powertrain Simulation Model
3.4.2 Simulation Results
3.5 Notes and References
References
4 Inertia Phase Control of the Clutch-to-Clutch Shift Process
4.1 Introduction
4.2 Two-Degree-of-Freedom Linear Controller
4.2.1 Controller Design
4.2.2 Simulation Results
4.3 Nonlinear Feedback-Feedforward Controller
4.3.1 Clutch Slip Controller
4.3.2 Simulation Results
4.4 Backstepping Controller
4.4.1 Nonlinear Controller with ISS Property
4.4.2 Implementation Issues
4.4.3 Controller of the Considered Clutch System
4.4.4 Simulation Results
4.5 Backstepping Controller for DCTs
4.5.1 System Modeling and Problem Statement
4.5.2 Controller Design
4.5.3 Simulation Results
4.6 Notes and References
References
5 Torque Estimation of the Vehicle Drive Shaft
5.1 Introduction
5.2 Driveline Modeling and Problem Statement
5.2.1 Driveline Modeling
5.2.2 Estimation Problem Statement
5.3 Reduced-Order Nonlinear Shaft Torque Observer
5.3.1 Structure of the Observer
5.3.2 Properties of the Error Dynamics
5.3.3 Guideline of Choosing Tuning Parameters
5.3.4 Observer Design for Considered Vehicle
5.4 Simulation Results
5.4.1 Powertrain Simulation Model
5.4.2 Simulation Results
5.5 Notes and References
References
6 Clutch Disengagement Timing Control of AMT Gear Shift
6.1 Introduction
6.2 Observer-Based Clutch Disengagement Timing Control
6.3 Clutch Disengagement Strategy
6.4 Simulation Results
6.4.1 Simulation Results with Constant Observer Gain
6.4.2 Simulation Results with Switched Observer Gains
6.5 Notes and References
References
7 Clutch Engagement Control of AMT Gear Shift
7.1 Introduction
7.2 Power-On Upshift of AMT
7.2.1 Dynamics and Control Strategy
7.2.2 Simulation Results
7.3 Power-On Downshift of AMT
7.3.1 Dynamic Process of Power-On Downshift
7.3.2 Control Problem Descriptioh
7.3.3 Controller Design of Torque Recovery Phase
7.3.4 Simulation Results
7.4 Notes and References
References
8 Data-Driven Start-Up Control of AMT Vehicle
8.1 Introduction
8.2 Control Requirements
8.3 Data-Driven Start-Up Predictive Controller of AMT Vehicle
8.3.1 Subspace Linear Predictor
8.3.2 Data-Driven Start-Up Predictor
8.3.3 Predictive Output Equation
8.3.4 Data-Driven Predictive Controller Without Constraints
8.3.5 Data-Driven Predictive Controller with Constraints
8.4 Simulation Results
8.4.1 Controller Test Under Nominal Conditions
8.4.2 Controller Test Under Changed Conditions
8.5 Notes and References
References
Appendix A Lyapunov Stability
References
Appendix B Input-to-State Stability (ISS)
B.1 Comparison Functions
B.2 Input-to-State Stability
B.2.1 Useful Lemmas
References
Appendix C Backstepping
C.1 About CLF
C.2 Backstepping Design
C.3 Adaptive Backstepping
References
Appendix D Model Predictive Control (MPC)
D.1 Linear MPC
D.2 Nonlinear MPC (NMPC)
D.2.1 NMPC Based on Discrete-Time Model
D.2.2 NMPC Based on Continuous-Time Model
References
Appendix E Linear Matrix Inequality (LMI)
E.1 Convexity
E.2 Linear Matrix Inequalities
E.3 Casting Problems in an LMIs Setting
References
Appendix F Subspace Linear Predictor
References