蓋根堡多項式(格根鮑爾多項式)

蓋根堡多項式

格根鮑爾多項式一般指本詞條

蓋根堡多項式(Gegenbauer function)是蓋根堡微分方程的特殊解,又被翻譯為格根鮑爾多項式,超球多項式,蓋根鮑爾多項式等。具有帶權正交性。

基本介紹

  • 中文名:蓋根堡多項式
  • 外文名:Gegenbauer function
  • 分類:計算機 數學
  • 又名:格根鮑爾多項式
  • 又稱:蓋根鮑爾多項式
  • 類似:超球多項式
  • 性質:正交性
定義,特徵,歸一化,套用,

定義

則係數多項式
就稱為帶參數
的k階蓋根堡多項式,也稱為超球不等式。
時蓋根堡多項式如下
蓋根堡多項式
時蓋根堡多項式如下
蓋根堡多項式
是蓋根堡多項式如下:
蓋根堡多項式

特徵

1、多項式可以根據其生成函式來定義
蓋根堡多項式
2、多項式滿足遞推關係
蓋根堡多項式
3、蓋根堡多項式是蓋根堡微分方程的特殊解
蓋根堡多項式
當α=1/2時,方程式減少到勒讓德方程,蓋根堡多項式減少到勒讓德多項式。
當α=0時,方程式減少到切比雪夫微分方程,蓋根堡多項式減少到第一類的切比雪夫多項式。
4、它們是雅克比多項式的特殊情況
蓋根堡多項式
其中,
代表上升階乘的
。因此,也有羅德里格斯公式
蓋根堡多項式

歸一化

對於一個固定的α,所述多項式是在[-1,1]相對於所述加權函式正交
蓋根堡多項式
對於
而言
蓋根堡多項式
它們被歸一化
蓋根堡多項式

套用

在潛在理論和諧波分析的上下文中,蓋根堡多項式自然地表現為勒讓德多項式的擴展。
蓋根堡多項式
當n=3時,這給出了引力勢的勒讓德多項式擴展。類似的表達式可用於擴展球中的Poisson核心。
因此數量
是球面諧波,當被認為是x的函式。實際上,它們正好是帶狀球面諧波,達到歸一化常數。
蓋根堡多項式也出現在正定函式的理論中。
蓋根堡多項式

熱門詞條

聯絡我們