教育經歷
庫朗數學科學研究所,紐約大學,博士
中國科學院系統科學研究所,碩士
中國科學技術大學,本科
工作經歷
上海交通大學,講席教授
科羅拉多大學博爾得分校,助理教授,副教授,教授
加州大學河濱分校,教授
普林斯頓高等研究院,博士後
賓夕法尼亞大學,博士後
所獲榮譽
美國數學會會士,2017年
發表論文
1.C. Li, C. Liu, Z. Wu and H. Xu, Non-negative solutions to fractional Laplace equations with isolated singularity. Adv. Math. 373 (2020) https://doi.org/10.1016/j.aim.2020.107329
2.W. Chen, C. Li and S. Qi, A Hopf lemma and regularity for fractional p-Laplacians. Discrete Contin. Dyn. Syst. 40 (2020), no. 6, 3235–3252, doi: 10.3934/dcds.2020034
3.W. Chen, C. Li, J. Zhu, Fractional equations with indefinite nonlinearities, Disc. Cont. Dyn. Syst. 39(2019), p1257-1268, doi: 10.3934/dcds.2019054
4.C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1565–1575, DOI: https://doi.org/10.1090/proc/14342
5.C. Li, Z. Wu and H. Xu, Maximum principles and Bocher type theorems, P. Natl. Acad. Sci. USA, 27(115), 2018, p6976-6979, DOI: https://doi.org/10.1073/pnas.1804225115
6.C. Li and Z. Wu, Radial symmetry for systems of fractional Laplacian, Acta Mathematica Scientia,5,38(2018), p1567-1582, doi.org/10.1016/S0252-9602(18)30832-4
7.W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335(2018), p735-758, Doi.org/10.1016/l.aim.2018.07.016
8.W. Chen, C. Li, G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calculus of Variations and Partial Differential Equations, 2(56), 2017, 18pages. DOI 10.1007/s00526-017-1110-3
9.T. Cheng, G. Huang, C. Li, the maximum principles for fractional Laplacian equations and their applications, Comm. Contemporary Math., 6, 19(2017). DOI: http://dx.doi.org/10.1142/S0219199717500183
10. W. Chen, C. Li, Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308(2017), 404-437. DOI:http://dx.doi.org/10.1016/j.aim.2016.11.038
11. Z. Cheng, G. Huang, C. Li, On the Hardy-Littlewood-Sobolev type systems, Comm. Pure & Appl. Anal. 6, 15(2016), 2059-2074. DOI:10.3934/cpaa.2016027
12. C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. in Partial Differential Equations, 7, 41(2016), 1029-1039. DOI: http://dx.doi.org/10.1080/03605302.2016.1190376
13. L. Zhang, C. Li, W. Chen, T. Cheng, A Liouville theorem for $α$-harmonic functions in $R^n_+$. Disc. & Cont. Dynamics Systems, 3, 36(2016), 1721-1736. DOI:10.3934/dcds.2016.36.1721
14. W. Chen, C. Li, and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptical equations, International J. of Math., 8, 27(2016). DOI: 10.1142/S0129167X16500646
15. Y. Lei, C. Li, A sharp criteria of Liouville type for some nonlinear systems, Disc. & Cont. Dynamics Systems, 6, 36(2016), DOI:http://dx.doi.org/10.3934/dcds.2016.36.xx
16. C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Society, 9, 144(2016), 3731-3740 DOI: https://doi.org/10.1090/proc/13166
17. G. Huang and C. Li, A Liouville theorem for high order degenerate elliptic equations, J. Diff. Equations, 258(2015), 1229-1251. DOI:10.1016/j.jde.2014.10.017
18. Z. Cheng and C. Li, Shooting method with sign-changing nonlinearity, nonlinear analysis: theory, methods & applications, 114(2015), 2-12. DOI:10.1016/j.na.2014.10.019
19. G. Huang, C. Li, and X. Yin, Existence of the extremal functions for the discrete Hardy-Littlewood-Sobolev Inequality, Disc. & Cont. Dynamics Systems, 3, 35(2015), p935-942. DOI:10.3934/dcds.2015.35.935
20. Z. Cheng and C. Li, An extended discrete Hardy-Littlewood-Sobolev inequality, Disc. Cont. Dynamics Sys. 34(2014), 1951-1959. DOI:10.3934/dcds.2014.34.1951
21. C. Deng and C. Li, Endpoint bilinear estimates and applications to the 2-dimensional Poisson-Nernst-Planck system, Nonlinearity, 26(2013), 2993-3009; DOI:10.1088/0951-7715/26/11/2993
22. W. Chen, Y. Fang, C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space, Journal of Functional Analysis 265 (2013), 1522-1555. DOI:10.1016/j.jfa.2013.06.010
23. W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Comm. Pure & Appl. Anal. 12(2013), 497-2514. DOI:10.3934/cpaa.2013.12.2497
24. W. Chen, C. Li, Method of moving planes in integral forms and regularity lifting. Recent developments in geometry and analysis, Adv. Lect. Math. (ALM), 23, Int. Press, Somerville, MA, 2012. 35R11 (35-02 45G15), 27-62.
25. Y. Lei, C. Li, and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system, Calc. Var. of Partial Differential Equations, 45(2012), 43-61. DOI:10.1007/s00526-011-0450-7
26. Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a γ-Laplace system, J. Differential Equations, 252(2012), 2739-2758. DOI:10.1016/j.jde.2011.10.009
27. C. Li, J. Villavert, An extension of Hardy-Littlewood-Polya inequality, Acta Math. Scientia, 31(2011), 1-4. DOI:10.1016/S0252-9602(11)60400-1
28. J. Bebernes, Y. Lei, C. Li, A singularity analysis of positive solutions to an Euler-Lagrange integral system, Rocky Mountain J. of Mathematics, 41(2011),387-410. DOI:10.1216/RMJ-2011-41-2-387
29. W. Chen, C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Disc. Cont. Dynamics Sys. 30 (2011), 1083-1093. DOI:10.3934/dcds.2011.30.1083
30. Y. Lei, C. Li, C. Ma, Decay estimation for positive solution of a γ-Laplace equation, Disc. & Cont. Dynamics Systems, 30(2011), 547-558. DOI:10.3934/dcds.2011.30.547
31. C. Ma, W. Chen, C. Li, Regularity of Solutions for an Integral System of Wolff Type, Adv. Math., 226(2011), 2676-2699. DOI:10.1016/j.aim.2010.07.020
32. T. Y. Hou, C. Li, Z. Shi, S. Wang, X. Yu, On singularity formation of a one-dimensional model for incompressible flows, Arch. Rational Mech. Anal. 199 (2011) 117–144. DOI:10.1007/s00205-010-0319-5