《有源噪聲控制(第二版)》是2014年11月出版的圖書,作者是陳克安。
基本介紹
- 書名:有源噪聲控制(第二版)
- 作者:陳克安
- ISBN:978-7-118-09806-8
- 頁數:336
- 定價:76.00
- 出版時間:2014年11月
- 裝幀:平裝
- 開本:16
- 版次:1版1次
- 字數:423
基本信息,內容簡介,目錄,
基本信息
書名:有源噪聲控制(第二版)
書號:978-7-118-09806-8
作者:陳克安
出版時間:2014年11月
譯者:
版次:1版1次
開本:16
裝幀:平裝
出版基金:
頁數:336
字數:423
中圖分類:TB535
叢書名:
定價:76.00
內容簡介
《有源噪聲控制(第二版)》本書是國防工業出版社2003年版《有源噪聲控制》的第2版,全面系統地介紹了有源噪聲控制的基礎理論、系統實現和工程套用。全書共11章。第1章評述了有源噪聲控制的發展歷程和主要技術特點,第2章和第3章總結了研究和套用有源噪聲控制技術所必需的聲學、振動聲輻射、自適應濾波和現代控制理論等方面的基礎知識。第4章~第6章介紹了有源控制器的結構、算法與實現。第7章~第10章分別研究了有源控制技術的主要套用領域,包括自由空間與封閉空間有源噪聲控制、結構聲輻射有源控制、有源聲學結構。第11章介紹了有源噪聲控制技術在實際工程中的套用情況,特別給出了有源耳機、飛機艙室與車內噪聲有源控制技術的套用現狀。本書集學術性和實用性為一體,不僅對從事噪聲與振動控制、信號處理及自動控制等工作的專業人員、高等院校教師和研究生有重要參考價值,而且對有志於開發聲學與振動新產品的人士有直接幫助。 This book is the second edition of Active Noise Control published in 2003 and by the National Defense Industry Press and introduces theoretical bases, system implementation, and engineering applications involved in active noise control. This book consists of 11 chapters. Firstly a brief history and characteristics for active noise control are reviewed in Chapter 1. Secondly, basic knowledge about acoustics, mechanical vibration and its sound radiation, adaptive filtering and modern control theory are summarized in Chapter 2 and 3 respectively. Thirdly, the structures and algorithms for adaptive active controllers are explored in Chapter 4, 5 and 6, and then in the following three chapters main application fields associated with active control of sound are examined respectively, including active control of sound in free space and enclosed space, active structural acoustic control and active acoustic structure, etc. Finally practical applications and the state of art for active noise control, including active earphone, active control of noise within aircraft and car cabin are introduced in detail in Chapter 11. This book is of benefit to theoretical study and new product development, which is written not only for engineer, faculty and graduate students in the field of noise and vibration control, signal processing and automatic control, but also for technician developing new acoustic products.
目錄
第1章概述
1.1噪聲控制的傳統方法及主要特點
1.1.1吸聲處理
1.1.2隔聲處理
1.1.3使用消聲器
1.2有源噪聲控制技術及其發展歷程
1.2.1概念的提出與早期發展
1.2.2管道噪聲有源控制
1.2.3自適應有源噪聲控制
1.2.4有源聲控制
1.2.5有源力控制
1.2.6有源聲學結構
1.3有源噪聲控制系統概述
1.3.1有源噪聲控制系統
1.3.2系統設計、實現及工程化
1.4本書架構
參考文獻
第2章聲場與結構振動聲輻射
2.1聲波方程與聲場基本特性
2.1.1 線性聲波方程
2.1.2平面聲波與球面聲波
2.1.3聲壓與聲強
2.1.4聲波的疊加
2.2有界空間聲場
2.2.1管道聲場
2.2.2封閉空間聲場
2.3結構振動概述
2.3.1質點振動系統
2.3.2一維彈性體的振動
2.3.3薄板的彎曲振動
2.4結構振動聲輻射
2.4.1簡單聲源聲輻射
2.4.2平板振動結構的聲輻射
2.4.3幾種求解聲功率的方法
2.4.4結構振動模態和聲輻射模態
參考文獻
第3章自適應濾波與控制系統設計
3.1信號與系統基礎
3.1.1信號與系統的基本描述
3.1.2信號分析和處理的基本內容
3.2數據採集與信號實時處理
3.2.1信號的採樣與轉換
3.2.2數位訊號處理器
3.3自適應濾波原理與算法
3.3.1維納濾波
1.1噪聲控制的傳統方法及主要特點
1.1.1吸聲處理
1.1.2隔聲處理
1.1.3使用消聲器
1.2有源噪聲控制技術及其發展歷程
1.2.1概念的提出與早期發展
1.2.2管道噪聲有源控制
1.2.3自適應有源噪聲控制
1.2.4有源聲控制
1.2.5有源力控制
1.2.6有源聲學結構
1.3有源噪聲控制系統概述
1.3.1有源噪聲控制系統
1.3.2系統設計、實現及工程化
1.4本書架構
參考文獻
第2章聲場與結構振動聲輻射
2.1聲波方程與聲場基本特性
2.1.1 線性聲波方程
2.1.2平面聲波與球面聲波
2.1.3聲壓與聲強
2.1.4聲波的疊加
2.2有界空間聲場
2.2.1管道聲場
2.2.2封閉空間聲場
2.3結構振動概述
2.3.1質點振動系統
2.3.2一維彈性體的振動
2.3.3薄板的彎曲振動
2.4結構振動聲輻射
2.4.1簡單聲源聲輻射
2.4.2平板振動結構的聲輻射
2.4.3幾種求解聲功率的方法
2.4.4結構振動模態和聲輻射模態
參考文獻
第3章自適應濾波與控制系統設計
3.1信號與系統基礎
3.1.1信號與系統的基本描述
3.1.2信號分析和處理的基本內容
3.2數據採集與信號實時處理
3.2.1信號的採樣與轉換
3.2.2數位訊號處理器
3.3自適應濾波原理與算法
3.3.1維納濾波
3.3.2自適應濾波
3.3.3LMS算法
3.3.4LMS算法性能分析
3.4控制理論與系統設計
3.4.1控制理論概述
3.4.2線性反饋系統
3.4.3魯棒控制系統設計
參考文獻
第4章單通道有源控制器結構與算法
4.1有源控制器結構與算法
4.1.1有源控制器的類別
4.1.2自適應有源控制器
4.2前饋系統與FxLMS算法
4.2.1系統模型
4.2.2FxLMS算法推導
4.2.3FxLMS算法性能分析
4.3改進的有源控制器結構與算法
4.3.1概述
4.3.2改進的FxLMS算法
4.3.3FxRLS算法
4.3.4頻域自適應有源控制算法
4.4針對特定問題的有源控制器
4.4.1概述
4.4.2線譜噪聲有源控制
4.4.3次級聲反饋
4.4.4有源反饋控制
4.5基於現代控制理論的系統設計
4.5.1管道噪聲前饋控制系統模型
4.5.2標稱控制器設計
4.5.3魯棒前饋控制器設計
參考文獻
第5章次級通路特性與自適應建模
5.1次級通路特性
5.1.1電信號通路
5.1.2自由聲場中的聲通路
5.1.3駐波聲場中的聲通路
5.1.4擴散聲場中的聲通路
5.2次級通路建模及其影響
5.2.1建模濾波器與建模誤差
5.2.2建模濾波器參數選取
5.2.3建模失配的影響
5.3次級通路建模方法
5.3.1離線建模
5.3.2線上建模
參考文獻
第6章多通道系統與有源控制器
6.1多通道系統及其實現
6.1.1系統特性與實現
6.1.2多通道算法概述
6.2多通道FxLMS算法
6.2.1算法推導
6.2.2運算量統計及性能分析
6.2.3多通道濾波-u算法
6.3多通道算法的快速實現
6.3.1權係數快速疊代算法
6.3.2多通道局部疊代算法
6.3.3組合逆算法
3.3.3LMS算法
3.3.4LMS算法性能分析
3.4控制理論與系統設計
3.4.1控制理論概述
3.4.2線性反饋系統
3.4.3魯棒控制系統設計
參考文獻
第4章單通道有源控制器結構與算法
4.1有源控制器結構與算法
4.1.1有源控制器的類別
4.1.2自適應有源控制器
4.2前饋系統與FxLMS算法
4.2.1系統模型
4.2.2FxLMS算法推導
4.2.3FxLMS算法性能分析
4.3改進的有源控制器結構與算法
4.3.1概述
4.3.2改進的FxLMS算法
4.3.3FxRLS算法
4.3.4頻域自適應有源控制算法
4.4針對特定問題的有源控制器
4.4.1概述
4.4.2線譜噪聲有源控制
4.4.3次級聲反饋
4.4.4有源反饋控制
4.5基於現代控制理論的系統設計
4.5.1管道噪聲前饋控制系統模型
4.5.2標稱控制器設計
4.5.3魯棒前饋控制器設計
參考文獻
第5章次級通路特性與自適應建模
5.1次級通路特性
5.1.1電信號通路
5.1.2自由聲場中的聲通路
5.1.3駐波聲場中的聲通路
5.1.4擴散聲場中的聲通路
5.2次級通路建模及其影響
5.2.1建模濾波器與建模誤差
5.2.2建模濾波器參數選取
5.2.3建模失配的影響
5.3次級通路建模方法
5.3.1離線建模
5.3.2線上建模
參考文獻
第6章多通道系統與有源控制器
6.1多通道系統及其實現
6.1.1系統特性與實現
6.1.2多通道算法概述
6.2多通道FxLMS算法
6.2.1算法推導
6.2.2運算量統計及性能分析
6.2.3多通道濾波-u算法
6.3多通道算法的快速實現
6.3.1權係數快速疊代算法
6.3.2多通道局部疊代算法
6.3.3組合逆算法
6.4自由場分散式有源控制
6.4.1系統的基本形式
6.4.2系統性能
6.4.3系統穩定性
6.5自適應有源控制器
6.5.1概述
6.5.2數位訊號處理器
參考文獻
第7章自由空間中的有源噪聲控制
7.1有源噪聲控制的聲學基礎
7.1.1惠更斯原理及在有源噪聲控制中的套用
7.1.2振動結構聲輻射的集中參數模型
7.2基於單極子聲源的有源控制
7.2.1兩單極子的最小輻射聲功率
7.2.2基於單極子聲源陣的自由聲場有源控制
7.2.3單極子聲源陣控制平板聲輻射
7.3基於多極子聲源的有源控制
7.3.1用多極子源表示單極子源
7.3.2基於聲功率最小化的有源控制
7.4自由聲場中的局部有源靜區
7.4.1局部有源靜區
7.4.2有源聲屏障
7.5次級聲源和誤差感測器的布放
7.5.1目標函式的選擇
7.5.2次級聲源和誤差感測器的最優布放
參考文獻
第8章有界空間中的有源噪聲控制
8.1管道噪聲的有源控制
8.1.1平面波的有源控制
8.1.2有限長管道中的有源噪聲控制
8.2三維駐波聲場中的有源控制
8.2.1聲勢能最小化
8.2.2次級聲源和誤差感測器布放規律
8.3擴散聲場中的有源噪聲控制
8.3.1自由擴散聲場中的有源靜區
8.3.2衍射擴散聲場中的有源靜區
8.4虛擬誤差感測
8.4.1誤差感測策略
8.4.2局部空間中的虛擬誤差感測
8.5有源噪聲控制的物理機制
參考文獻
第9章結構聲輻射有源控制
9.1基於力源的結構聲輻射有源控制
9.1.1理論分析
9.1.2次級力源的影響
9.1.3物理機制
9.2封閉空間中透射聲的有源控制
9.2.1結構-聲耦合封閉空間中的聲場
9.2.2封閉空間聲場有源控制
9.2.3封閉空間中雙層平板聲透射的有源控制
6.4.1系統的基本形式
6.4.2系統性能
6.4.3系統穩定性
6.5自適應有源控制器
6.5.1概述
6.5.2數位訊號處理器
參考文獻
第7章自由空間中的有源噪聲控制
7.1有源噪聲控制的聲學基礎
7.1.1惠更斯原理及在有源噪聲控制中的套用
7.1.2振動結構聲輻射的集中參數模型
7.2基於單極子聲源的有源控制
7.2.1兩單極子的最小輻射聲功率
7.2.2基於單極子聲源陣的自由聲場有源控制
7.2.3單極子聲源陣控制平板聲輻射
7.3基於多極子聲源的有源控制
7.3.1用多極子源表示單極子源
7.3.2基於聲功率最小化的有源控制
7.4自由聲場中的局部有源靜區
7.4.1局部有源靜區
7.4.2有源聲屏障
7.5次級聲源和誤差感測器的布放
7.5.1目標函式的選擇
7.5.2次級聲源和誤差感測器的最優布放
參考文獻
第8章有界空間中的有源噪聲控制
8.1管道噪聲的有源控制
8.1.1平面波的有源控制
8.1.2有限長管道中的有源噪聲控制
8.2三維駐波聲場中的有源控制
8.2.1聲勢能最小化
8.2.2次級聲源和誤差感測器布放規律
8.3擴散聲場中的有源噪聲控制
8.3.1自由擴散聲場中的有源靜區
8.3.2衍射擴散聲場中的有源靜區
8.4虛擬誤差感測
8.4.1誤差感測策略
8.4.2局部空間中的虛擬誤差感測
8.5有源噪聲控制的物理機制
參考文獻
第9章結構聲輻射有源控制
9.1基於力源的結構聲輻射有源控制
9.1.1理論分析
9.1.2次級力源的影響
9.1.3物理機制
9.2封閉空間中透射聲的有源控制
9.2.1結構-聲耦合封閉空間中的聲場
9.2.2封閉空間聲場有源控制
9.2.3封閉空間中雙層平板聲透射的有源控制
9.3有源聲吸收
9.3.1一維平面波的有源吸收
9.3.2三維空間斜入射聲波的有源吸收
參考文獻
第10章有源聲學結構
10.1有源聲學結構及組成
10.1.1有源聲學結構概述
10.1.2誤差感測策略
10.2次級源與誤差感測器
10.2.1次級源
10.2.2誤差感測器
10.3基於分散式聲源的有源隔聲結構
10.3.1基本理論
10.3.2次級聲源的布放
10.3.3誤差信號的獲取
10.4雙層有源隔聲結構
10.4.1系統建模與分析
10.4.2有源隔聲機理
參考文獻
第11章有源噪聲控制技術的實際套用
11.1發展歷程與現狀
11.1.1有源噪聲控制技術的開發與套用
11.1.2需要解決的問題
11.2有源噪聲控制技術的套用
11.2.1有源耳機
11.2.2飛行器艙內噪聲有源控制
11.2.3汽車車內噪聲有源控制
11.3開發中的有源控制技術
11.3.1自由空間與管道噪聲有源控制
11.3.2三維封閉空間噪聲有源控制
11.3.3聲學邊界的有源控制
11.3.4有源控制技術的擴展套用
參考文獻
9.3.1一維平面波的有源吸收
9.3.2三維空間斜入射聲波的有源吸收
參考文獻
第10章有源聲學結構
10.1有源聲學結構及組成
10.1.1有源聲學結構概述
10.1.2誤差感測策略
10.2次級源與誤差感測器
10.2.1次級源
10.2.2誤差感測器
10.3基於分散式聲源的有源隔聲結構
10.3.1基本理論
10.3.2次級聲源的布放
10.3.3誤差信號的獲取
10.4雙層有源隔聲結構
10.4.1系統建模與分析
10.4.2有源隔聲機理
參考文獻
第11章有源噪聲控制技術的實際套用
11.1發展歷程與現狀
11.1.1有源噪聲控制技術的開發與套用
11.1.2需要解決的問題
11.2有源噪聲控制技術的套用
11.2.1有源耳機
11.2.2飛行器艙內噪聲有源控制
11.2.3汽車車內噪聲有源控制
11.3開發中的有源控制技術
11.3.1自由空間與管道噪聲有源控制
11.3.2三維封閉空間噪聲有源控制
11.3.3聲學邊界的有源控制
11.3.4有源控制技術的擴展套用
參考文獻
Contents
Chapter 1Introduction
1.1The traditional noise control approaches and its characteristics
1.1.1Sound absorption
1.1.2Sound insulation
1.1.3The use of muffler
1.2A brief history of active noise control
1.2.1The early history of active noise control
1.2.2Active control of duct noise
1.2.3Adaptive active noise control
1.2.4Active noise control by using secondary acoustic sources
1.2.5Active structural acoustic control
Chapter 1Introduction
1.1The traditional noise control approaches and its characteristics
1.1.1Sound absorption
1.1.2Sound insulation
1.1.3The use of muffler
1.2A brief history of active noise control
1.2.1The early history of active noise control
1.2.2Active control of duct noise
1.2.3Adaptive active noise control
1.2.4Active noise control by using secondary acoustic sources
1.2.5Active structural acoustic control
1.2.6Active acoustic structure
1.3An introduction to active noise control
1.3.1Active noise control system
1.3.2Design, implementation, and its practical applications
1.4Organization and a brief introduction to this book
References
Chapter 2Sound field and structural sound radiation
2.1Wave equation and basic performances of sound field
2.1.1Linear wave equation
2.1.2Plane wave and spherical wave
2.1.3Sound pressure and sound intensity
2.1.4Superposition of sound waves
2.2Sound field in bounded spaces
2.2.1Sound field in ducts
2.2.2Sound field in enclosure
2.3Basic description of structural vibration
2.3.1Vibration of a particle system
2.3.2Vibration of beam
2.3.3Flexural vibration of thin plate
2.4Sound radiation from vibrating structures
2.4.1Sound radiation from a simple source
2.4.2Sound radiation from plates
2.4.3Calculation of the sound power
2.4.4Structural vibration modes and sound radiation modes
References
Chapter 3Adaptive filtering and control system design
3.1Fundamentals of signal and system
3.1.1Basic descriptions of signal and system
3.1.2Signal analysis and processing
3.2Data acquisition and signal real time processing
3.2.1Signal sampling and transform
3.2.2Digital signal processor
3.3Principle of adaptive filtering and its algorithms
3.3.1Wiener filtering
3.3.2Adaptive filtering
3.3.3LMS algorithm
3.3.4Performance analysis of the LMS algorithm
3.4Control theory and system design
3.4.1Introduction to control theory
3.4.2Linear feedback system
3.4.3Robust control system design
References
Chapter 4Structure and algorithm of single channel active
noise control system4.1Structures and algorithms of active controllers
4.1.1Classification of active controllers
4.1.2Adaptive active controller
4.2Feedforward system and FxLMS algorithm
4.2.1System model
4.2.2Derivation of FxLMS algorithm
4.2.3Performance analysis on FxLMS algorithm
4.3Modified active controller and algorithms
1.3An introduction to active noise control
1.3.1Active noise control system
1.3.2Design, implementation, and its practical applications
1.4Organization and a brief introduction to this book
References
Chapter 2Sound field and structural sound radiation
2.1Wave equation and basic performances of sound field
2.1.1Linear wave equation
2.1.2Plane wave and spherical wave
2.1.3Sound pressure and sound intensity
2.1.4Superposition of sound waves
2.2Sound field in bounded spaces
2.2.1Sound field in ducts
2.2.2Sound field in enclosure
2.3Basic description of structural vibration
2.3.1Vibration of a particle system
2.3.2Vibration of beam
2.3.3Flexural vibration of thin plate
2.4Sound radiation from vibrating structures
2.4.1Sound radiation from a simple source
2.4.2Sound radiation from plates
2.4.3Calculation of the sound power
2.4.4Structural vibration modes and sound radiation modes
References
Chapter 3Adaptive filtering and control system design
3.1Fundamentals of signal and system
3.1.1Basic descriptions of signal and system
3.1.2Signal analysis and processing
3.2Data acquisition and signal real time processing
3.2.1Signal sampling and transform
3.2.2Digital signal processor
3.3Principle of adaptive filtering and its algorithms
3.3.1Wiener filtering
3.3.2Adaptive filtering
3.3.3LMS algorithm
3.3.4Performance analysis of the LMS algorithm
3.4Control theory and system design
3.4.1Introduction to control theory
3.4.2Linear feedback system
3.4.3Robust control system design
References
Chapter 4Structure and algorithm of single channel active
noise control system4.1Structures and algorithms of active controllers
4.1.1Classification of active controllers
4.1.2Adaptive active controller
4.2Feedforward system and FxLMS algorithm
4.2.1System model
4.2.2Derivation of FxLMS algorithm
4.2.3Performance analysis on FxLMS algorithm
4.3Modified active controller and algorithms
4.3.1Introduction
4.3.2Modified FxLMS algorithms
4.3.3FxRLS algorithm
4.3.4Active control algorithms in frequency domain
4.4Specified active controller system
4.4.1Introduction
4.4.2Active control of pure tone
4.4.3Secondary acoustic feedback
4.4.4Active feedback control
4.5Modern control theory based system design
4.5.1Model of active feedforward control of duct noise
4.5.2Design of standard active controllers
4.5.3Robust feedforward active controller
References
Chapter 5Characteristics of secondary paths and adaptive modeling5.1Characteristics of secondary paths
5.1.1Paths of Electronic signal
5.1.2Acoustic paths in free field
5.1.3Acoustic paths in standing wave field
5.1.4Acoustic paths in diffuse field
5.2Modeling of secondary path and its effect
5.2.1Modeling filter and modeling error
5.2.2Selections on modeling filter’s parameters
5.2.3Effects of modeling mismatch
5.3Methods of secondary path modeling
5.3.1Offline modeling
5.3.2Online modeling
References
Chapter 6Multichannel active system and its controller
6.1Multichannel system and its implementation
6.1.1System characteristics and its implementation
6.1.2Introduction to active multichannel algorithms
6.2Multichannel FxLMS algorithm
6.2.1Algorithm derivation
6.2.2Computational load and performance analysis
6.2.3Multichannel filtered-u algorithm
6.3Fast implementation ofmultichannel algorithms
6.3.1Fast updated weight coefficient algorithm
6.3.2Multichannel partial updated algorithms
6.3.3Combined inverse algorithms
6.4Decentralized active control of sound in free field
6.4.1System configuration
6.4.2System performance
6.4.3System stability
6.5Adaptive active controller
6.5.1Introduction
6.5.2Digital signal processor
References
Chapter 7Active control of sound in free field
7.1Theoretical basis for active noise control
7.1.1Huygen’s principle and its application into active noise control
7.1.2Lumped parameter model of sound radiation from a vibrating structure
7.2Active control of free field by using monopole sources
7.2.1The minimum acoustic power output of two monopoles
7.2.2Active control of free field by an array of monopole sources
7.2.3Active control of sound radiated from a finite panel by arrays of monopole sources
7.3Active control of free fieldby using multipole sources
7.3.1Representations of a monopole by multipole sources
7.3.2Active minimization of sound power output
7.4Active quiet zone in local space
7.4.1Active local quiet zone
7.4.2Active acoustic barrier
7.5Arrangement for secondary sound sources and error sensors
7.5.1The choice of the objective function
7.5.2Optimal arrangement for secondary sound sources and error sensors
4.3.2Modified FxLMS algorithms
4.3.3FxRLS algorithm
4.3.4Active control algorithms in frequency domain
4.4Specified active controller system
4.4.1Introduction
4.4.2Active control of pure tone
4.4.3Secondary acoustic feedback
4.4.4Active feedback control
4.5Modern control theory based system design
4.5.1Model of active feedforward control of duct noise
4.5.2Design of standard active controllers
4.5.3Robust feedforward active controller
References
Chapter 5Characteristics of secondary paths and adaptive modeling5.1Characteristics of secondary paths
5.1.1Paths of Electronic signal
5.1.2Acoustic paths in free field
5.1.3Acoustic paths in standing wave field
5.1.4Acoustic paths in diffuse field
5.2Modeling of secondary path and its effect
5.2.1Modeling filter and modeling error
5.2.2Selections on modeling filter’s parameters
5.2.3Effects of modeling mismatch
5.3Methods of secondary path modeling
5.3.1Offline modeling
5.3.2Online modeling
References
Chapter 6Multichannel active system and its controller
6.1Multichannel system and its implementation
6.1.1System characteristics and its implementation
6.1.2Introduction to active multichannel algorithms
6.2Multichannel FxLMS algorithm
6.2.1Algorithm derivation
6.2.2Computational load and performance analysis
6.2.3Multichannel filtered-u algorithm
6.3Fast implementation ofmultichannel algorithms
6.3.1Fast updated weight coefficient algorithm
6.3.2Multichannel partial updated algorithms
6.3.3Combined inverse algorithms
6.4Decentralized active control of sound in free field
6.4.1System configuration
6.4.2System performance
6.4.3System stability
6.5Adaptive active controller
6.5.1Introduction
6.5.2Digital signal processor
References
Chapter 7Active control of sound in free field
7.1Theoretical basis for active noise control
7.1.1Huygen’s principle and its application into active noise control
7.1.2Lumped parameter model of sound radiation from a vibrating structure
7.2Active control of free field by using monopole sources
7.2.1The minimum acoustic power output of two monopoles
7.2.2Active control of free field by an array of monopole sources
7.2.3Active control of sound radiated from a finite panel by arrays of monopole sources
7.3Active control of free fieldby using multipole sources
7.3.1Representations of a monopole by multipole sources
7.3.2Active minimization of sound power output
7.4Active quiet zone in local space
7.4.1Active local quiet zone
7.4.2Active acoustic barrier
7.5Arrangement for secondary sound sources and error sensors
7.5.1The choice of the objective function
7.5.2Optimal arrangement for secondary sound sources and error sensors
References
Chapter 8Active control of bounded sound field
8.1Active control of sound field in duct
8.1.1Active control of plane waves
8.1.2Active control of noise in a finite length duct
8.2Active control of low frequency sound in three dimensional enclosed space
8.2.1Minimization of total time averaged acoustic potential energy
8.2.2Arrangement of secondary sources and error sensors
8.3Active control of diffuse sound field
8.3.1Active quiet zone in a free diffuse field
8.3.2Active quiet zone in a diffracted diffuse field
8.4Virtual error sensing
8.4.1Error sensing strategies
8.4.2Virtual error sensing in local space
8.5Physical mechanisms for active noise control
References
Chapter 9Active control of structure-induced sound
9.1Active control of sound radiation using force input
9.1.1Theoretical analysis
9.1.2Effects of secondary forces
9.1.3Physical mechanisms
9.2Active control of sound transmission into enclosure
9.2.1Sound field within a structural-acoustic coupled enclosure
9.2.2Minimization of acoustic potential energy in enclosures
9.2.3Active enhancement of sound transmission through double walls
9.3Active absorption of sound
9.3.1Active absorption of one-dimensional plane waves
9.3.2Active absorption of three-dimensional obliquely incident waves
References
Chapter 10Active acoustic structure
10.1Active acoustic structure and its configuration
10.1.1Constitution of active acoustic structure
10.1.2Error sensing strategies
10.2Secondary sources and error sensors
10.2.1Secondary sources
10.2.2Error sensors
10.3Distributed sound source based active insulation of structural sound
10.3.1Basic theory
10.3.2Arrangement of secondary sources
10.3.3Pick-up of error signal
10.4Double layer active structure of sound insulation
10.4.1System model and analysis
10.4.2Physical mechanisms for active insulation of sound
References
Chapter 11Practical applications of active noise control
11.1Development and state of the art
11.1.1Development and application of active noise control technology
11.1.2Problems needed to be solved
11.2Industrial applications of active noise control
11.2.1Active earphone
11.2.2Active control of noise in aerocraft cabin
11.2.3Active control of noise in car cabin
11.3Developing techniques for active noise control
11.3.1Active control of noise in free field and ducts
11.3.2Active control of noise in three dimensional enclosures
11.3.3Active control of acoustic boundary
11.3.4Extended applications of active control
Chapter 8Active control of bounded sound field
8.1Active control of sound field in duct
8.1.1Active control of plane waves
8.1.2Active control of noise in a finite length duct
8.2Active control of low frequency sound in three dimensional enclosed space
8.2.1Minimization of total time averaged acoustic potential energy
8.2.2Arrangement of secondary sources and error sensors
8.3Active control of diffuse sound field
8.3.1Active quiet zone in a free diffuse field
8.3.2Active quiet zone in a diffracted diffuse field
8.4Virtual error sensing
8.4.1Error sensing strategies
8.4.2Virtual error sensing in local space
8.5Physical mechanisms for active noise control
References
Chapter 9Active control of structure-induced sound
9.1Active control of sound radiation using force input
9.1.1Theoretical analysis
9.1.2Effects of secondary forces
9.1.3Physical mechanisms
9.2Active control of sound transmission into enclosure
9.2.1Sound field within a structural-acoustic coupled enclosure
9.2.2Minimization of acoustic potential energy in enclosures
9.2.3Active enhancement of sound transmission through double walls
9.3Active absorption of sound
9.3.1Active absorption of one-dimensional plane waves
9.3.2Active absorption of three-dimensional obliquely incident waves
References
Chapter 10Active acoustic structure
10.1Active acoustic structure and its configuration
10.1.1Constitution of active acoustic structure
10.1.2Error sensing strategies
10.2Secondary sources and error sensors
10.2.1Secondary sources
10.2.2Error sensors
10.3Distributed sound source based active insulation of structural sound
10.3.1Basic theory
10.3.2Arrangement of secondary sources
10.3.3Pick-up of error signal
10.4Double layer active structure of sound insulation
10.4.1System model and analysis
10.4.2Physical mechanisms for active insulation of sound
References
Chapter 11Practical applications of active noise control
11.1Development and state of the art
11.1.1Development and application of active noise control technology
11.1.2Problems needed to be solved
11.2Industrial applications of active noise control
11.2.1Active earphone
11.2.2Active control of noise in aerocraft cabin
11.2.3Active control of noise in car cabin
11.3Developing techniques for active noise control
11.3.1Active control of noise in free field and ducts
11.3.2Active control of noise in three dimensional enclosures
11.3.3Active control of acoustic boundary
11.3.4Extended applications of active control
References"