由史迪沃特所著的《微積分(上第7版影印版)》從Cengage Learning出版公司引進中國,原版書在北美大學中被廣泛採用,暢銷多年。影印版保留了原版書的全部內容,將其原原本本地呈獻給國內教師和學生。該書詳細介紹了微積分的概念、理論和方法,語言樸實、流暢、通俗易懂,書中的例題、習題貼近生活實際,能充分調動學生學習的興趣。本書分上、下兩冊,上冊內容包括:函式和模型、極限和變化率、微分法則、微分的套用、積分、積分的套用、積分法、積分的進一步套用、微分方程、參數方程和極坐標。下冊內容包括:無窮序列和級數、向量和解析幾何、向量函式、偏導數、多重積分、向量微積分、二階微分方程。本書可作為高等學校非數學類專業微積分、高等數學課程雙語教學的教材,也可供廣大師生教學參考之用。
基本介紹
- 書名:微積分/海外優秀數學類教材系列叢書
- 作者:史迪沃特
- 出版日期:2014年6月1日
- 語種:英語
- ISBN:7040396203
- 外文名:Calculus(Seventh Edition)
- 出版社:高等教育出版社
- 頁數:688頁
- 開本:16
Preface xi
To the Student xxiii
Diagnostic Tests xxiv
A PREVIEW OF CALCULUS
Functions and Models
1.1 Four Ways to Represent a Function
1.2 Mathematical Models: A Catalog of Essential Functions
1.3 New Functions from Old Functions
1.4 Graphing Calculators and Computers
1.5 Exponential Functions
1.6 Inverse Functions and Logarithms Review
Principles of Problem Solving
Limits and Derivatives
2.1 The Tangent and Velocity Problems
2.2 The Limit of a Function
2.3 Calculating Limits Using the Limit Laws
2.4 The Precise Definition of a Limit
2.5 Continuity
2.6 Limits at Infinity; Horizontal Asymptotes
2.7 Derivatives and Rates of Change 143
Writing Project - Early Methods for Finding Tangents
2.8 The Derivative as a Function
Review
Problems Plus
3 Differentiation Rules
4 Applications of Differentiation
5 Integrals
6 Applications of Integration
7 Techniques of Integration
8 Further Applications of Integration
9 Differential Equations
10 Parametric Equations and Polar Coordinates
11 Infinite Sequences and Series
12 Vectors and the Geometry of Space
13 Vector Functions
14 Partial Derivatives
15 Multiple Integrals
16 Vector Calculus
17 Second-Order Differential Equations
Appendixes
Index
To the Student xxiii
Diagnostic Tests xxiv
A PREVIEW OF CALCULUS
Functions and Models
1.1 Four Ways to Represent a Function
1.2 Mathematical Models: A Catalog of Essential Functions
1.3 New Functions from Old Functions
1.4 Graphing Calculators and Computers
1.5 Exponential Functions
1.6 Inverse Functions and Logarithms Review
Principles of Problem Solving
Limits and Derivatives
2.1 The Tangent and Velocity Problems
2.2 The Limit of a Function
2.3 Calculating Limits Using the Limit Laws
2.4 The Precise Definition of a Limit
2.5 Continuity
2.6 Limits at Infinity; Horizontal Asymptotes
2.7 Derivatives and Rates of Change 143
Writing Project - Early Methods for Finding Tangents
2.8 The Derivative as a Function
Review
Problems Plus
3 Differentiation Rules
4 Applications of Differentiation
5 Integrals
6 Applications of Integration
7 Techniques of Integration
8 Further Applications of Integration
9 Differential Equations
10 Parametric Equations and Polar Coordinates
11 Infinite Sequences and Series
12 Vectors and the Geometry of Space
13 Vector Functions
14 Partial Derivatives
15 Multiple Integrals
16 Vector Calculus
17 Second-Order Differential Equations
Appendixes
Index