《彌散性多相湍流反應流動的理論與模擬》是2018年清華大學出版社出版的圖書。
基本介紹
- 中文名:彌散性多相湍流反應流動的理論與模擬
- 作者:周力行
- 出版時間:2018年
- 出版社:清華大學出版社
- ISBN:9787302507543
內容簡介,作者簡介,圖書目錄,
內容簡介
本書在介紹多相流、湍流和燃燒理論的基礎上,給出了多相湍流反應流動的基本方程、單相湍流和多相湍流以及湍流燃燒的數學物理模型,討論了求解多相湍流反應流動的數值模擬方法,最後列舉了在不同燃燒裝置中的套用實例。
本書適合高校和科研院所工程熱物理、流體力學、熱能動力等專業的師生和研究工作者閱讀。
Fundamentals of multiphase flows, turbulent flows and combustion theory; Basic equations of multiphase turbulent reacting flows; modeling of turbulent flows; modeling of multiphase turbulent flows; modeling of turbulent combusting flows; numerical methods for simulation of multiphase turbulent reacting flows.
作者簡介
周力行 男,清華大學航天航空學院工程力學系教授,博士生導師。1932年出生於北京;1961年畢業於蘇聯列寧格勒工業大學物理-力學系,獲得副博士(相當於西方國家Ph. D博士)學位。
中國燃燒和多相流學術界的學術帶頭人之一,享受國務院特殊津貼。曾任清華大學煤的清潔燃燒國家重點實驗室學術委員會副主任,中國工程熱物理學會理事,中國力學學會多相流和非牛頓流專業組主任。國際多相流會議常設核心組中國代表.
現任國際燃燒學會會員,、多相流和燃燒方面多種國際會議的國際學術委員,《國際清潔能源技術學報》、《國際計算多相流學報》、《燃燒科學與技術》(中國)編委。
曾先後擔任美國多所大學的訪問教授,先後在美國、加拿大、德國、日本以及中國香港地區、台灣地區進行合作研究和講學60多次,擔任國內多所大學的兼職教授。
主要研究領域為多相流、湍流和燃燒。研究成果得到國內外公認,已出版中英文學術專著7部,在國內外期刊上發表學術論文300餘篇。SCI收錄、EI收錄、SCI他引均在數百篇以上。獲得2007年國家自然科學二等獎、1995年國家教委科技進步一等獎、1995年電力部科技進步一等獎、1995年光華科技一等獎、1992年全國優秀電力科技圖書一等獎和多項省部級科技成果二等獎。
圖書目錄
Preface i Nomenclature iii Introduction v
1. Some Fundamentals of Dispersed Multiphase Flows 1
1.1 Particle/Spray Basic Properties 1
1.1.1 Particle/Droplet Size and Its Distribution 1
1.1.2 Apparent Density and Volume Fraction 2
1.2 Particle Drag, Heat, and Mass Transfer 2
1.3 Single-Particle Dynamics 3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
References
Single-Particle Motion Equation 3 Motion of a Single Particle in a Uniform Flow Field 4 Particle Gravitational Deposition 4 Forces Acting on Particles in Nonuniform Flow Field 5
1.3.4.1 Magnus Force 5
1.3.4.2 Saffman Force 5
1.3.4.3 Particle Thermophoresis, Electrophoresis, and Photophoresis 5 Generalized Particle Motion Equation 6 Recent Studies on Particle Dynamics 6 7
Further Reading 8
2. Basic Concepts and Description of Turbulence 9
2.1 Introduction 9
2.2 Time Averaging 9
2.3 Probability Density Function 10
2.4 Correlations, Length, and Time Scales 12 References 13
3. Fundamentals of Combustion Theory 15
3.1 Combustion and Flame 15
3.2 Basic Equations of Laminar Multicomponent Reacting Flows and Combustion 16
3.2.1 Thermodynamic Relationships of Multicomponent Gases 16
xiii
3.2.2 Molecular Transport Laws of Multicomponent Reacting Gases 18
3.2.3 Basic Relationships of Chemical Kinetics 19
3.2.4 The Reynolds Transport Theorem 20
3.2.5 Continuity and Diffusion Equations 21
3.2.6 Momentum Equation 22
3.2.7 Energy Equation 23
3.2.8 Boundary Conditions at the Interface and Stefan Flux 26
3.3 Ignition and Extinction 30
3.3.1 Basic Concept 30
3.3.2 Dimensional Analysis 30
3.3.3 Ignition in an Enclosed Vessel—Simonov’s Unsteady Model 31
3.3.4 Ignition Lag (Induction Period) 34
3.3.5 Ignition by a Hot Plate—Khitrin-Goldenberg Model 35
3.3.6 Ignition and Extinction—Vulis Model 37
3.4 Laminar Premixed and Diffusion Combustion 41
3.4.1 Background 41
3.4.2 Basic Equations and Their Properties 41
3.4.3 Two-Zone Approximate Solution 43
3.4.4 Laminar Diffusion Flame 46
3.5 Droplet Evaporation and Combustion 47
3.5.1 Background 47
3.5.2 Droplet Evaporation in Stagnant Air 48
3.5.3 Basic Equations for Droplet Evaporation and Combustion 48
3.5.4 Droplet Evaporation With and Without Combustion 49
3.5.5 Droplet Evaporation and Combustion under Forced Convection 50
3.5.6 The d2 Law 52
3.5.7 Experimental Results 52
3.5.8 Droplet Ignition and Extinction 54
3.6 Solid-Fuel: Coal-Particle Combustion 54
3.6.1 Background 54
3.6.2 Coal Pyrolyzation (Devolatilization) 55
3.6.3 Carbon Oxidation 56
3.6.4 Carbon Oxidation—Basic Equations 56
3.6.5 Carbon Oxidation—Single-Flame-Surface Model-Only Reaction 1 or 2 at the Surface 57
3.6.6 Carbon Oxidation—Two-Flame-Surface Model 60
3.6.7 Coal-Particle Combustion 62
3.7 Turbulent Combustion and Flame Stabilization 64
3.7.1 Background 64
3.7.2 Turbulent Jet Diffusion Flame 64
3.7.3 Turbulent Premixed Flame—Damkohler-Shelkin’s Wrinkled-Flame Model 66
Contents xY
3.7.4 Turbulent Premixed Flame—Summerfield-Shetinkov’s Volume Combustion Model 67
3.7.5 Flame Stabilization 67
3.8 Conclusion on Combustion Fundamentals 69 References 69
4. Basic Equations of Multiphase Turbulent Reacting Flows 71
4.1 The Control Volume in a Multiphase-Flow System 71
4.2 The Concept of Volume Averaging 72
4.3 “Microscopic” Conservation Equations Inside Each Phase 73
4.4 The Volume-Averaged Conservation Equations for Laminar/Instantaneous Multiphase Flows 73
4.5 The Reynolds-Averaged Equations for Dilute Multiphase Turbulent Reacting Flows 78
4.6 The PDF Equations for Turbulent Two-Phase Flows and Statistically Averaged Equations 80
4.7 The Two-Phase Reynolds Stress and Scalar Transport Equations 83 References 87
5. Modeling of Single-Phase Turbulence 89
5.1 Introduction 89
5.2 The Closure of Single-Phase Turbulent Kinetic Energy Equation 90
5.3 The k-ε Two-Equation Model and Its Application 92
5.4 The Second-Order Moment Closure of Single-Phase Turbulence 96
5.5 The Closed Model of Reynolds Stresses and Heat Fluxes 99
5.6 The Algebraic Stress and Flux Models—Extended k-ε Model 101
5.7 The Application of DSM and ASM Models and Their Comparison with Other Models 103
5.8 Large-Eddy Simulation 112
5.8.1 Filtration 112
5.8.2 SGS Stress Models 113
5.8.3 LES of Swirling Gas Flows 114
5.9 Direct Numerical Simulation 116 References 119