岳聖瀛

岳聖瀛

岳聖瀛,男,博士,國家級青年人才、西安交通大學青年拔尖人才、西安交通大學航天航空學院教授、博士生導師。

基本介紹

工作經歷,研究領域,招生方向,國際會議,學術成果,

工作經歷

  • 2022.07- :西安交通大學航天航空學院,教授(青年拔尖A崗,國家級青年人才)
  • 2021.05-2022.06:山東大學高等技術研究院,研究員(齊魯青年學者第二層次)
  • 2018.04-2021.04:美國加州大學聖芭芭拉分校(UCSB),博士後研究員(Postdoctoral fellowship)
  • 2014.10-2018.03:德國亞琛高等計算研究所(AICES),研究員(Fellow)
  • 2013.07-2013.10:日本國立材料研究所(NIMS), 國際實習生 (Internship scholarship)

研究領域

主要研究方向為極端環境下功能性材料的力學、電學、光學等物理特性的多尺度研究。包括理論模型建立、量子力學第一性原理模擬、材料合成實驗、以及材料特性表征和原理驗證實驗。前期研究方向為利用第一性原理模擬計算研究材料特性以及物理機制。包括熱電效應的物理機制,材料中原子間的長程相互作用的表征,電子-聲子耦合作用,聲子-激子耦合作用等在材料中尤其是有機-無機鈣鈦礦太陽能電池結構、二維材料等的奇異特性。以及如何利用已知物理機制來調製材料中的能量輸運問題。

招生方向

  • 微納米材料物理特性的第一性原理計算模擬研究
  • 極端環境金屬及合金材料的物性探究
  • 複合材料的設計及理論與實驗研究

國際會議

2019 Oral Presentation “Ultralow thermal conductivity in a Two-Dimensional Material Due to Surface-Enhanced ResonantBonding” at 2019 MRS Spring Meeting, Phoenix, U.S.
2017 Oral Presentation “Methodology for ElectronicThermal Conductivity of Metal Solids from direct Non-equilibrium Ab InitioMolecular Dynamics” at the 4th International Conference on ComputationalEngineering, Darmstadt, Germany.
2017 Oral Presentation “The collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells” at the European Materials Research Society (EMRS), Strasbourg, France.
2017 Oral Presentation “New Methodology for the electronic thermal conductivity of metals via direct nonequilibrium ab Initio molecular dynamics” at the European Materials Research Society (EMRS), Strasbourg, France.
2016 Oral Presentation “Electronic ThermalConductivity of Metal Solids from Nonequilibrium ab initio MolecularDynamics” at the Nanoscale and Microscale Heat Transfer V EurothermSeminar No 108, Santorini, Greece.
2016 Poster "Electronic Thermal Conductivity of Metals from Non-equilibrium Ab-initio Molecular Dynamics" at AICES10-Year Anniversary, RWTH Aachen University, Aachen, Germany.
2016 Poster "Electronic Thermal Conductivity of Metals from Non-equilibrium Ab-initio Molecular Dynamics" at the 2016CAMD Summer School on Electronic Structure Theory and Materials Design, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
2015 Poster "Study of Thermal TransportProperties of Solids Based on Ab-initio Methods" at 3rd ECCOMAS YoungInvestigators Conference (YIC) & 6th GACM Colloquium on ComputationalMechanics & 3rd Aachen Conference on Computational Engineering Science(AC.CES), RWTH Aachen University, Aachen, Germany.
2015 Poster "Study of Thermal TransportProperties of Solids Based on Ab-initio Methods" at Workshop on Thermal Nanoscience and Nanotechnology, Pairs, France.
2014 Poster "First-principles Study on NovelStructures of Graphene Nanoribbons" at International Conference on theoretical and High-Performance Computational Chemistry 2014 (ICT-HPCC14), Beijing, China.

學術成果

1. First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and Möbius strips, Sheng-Ying Yue, Qing-Bo Yan, Zhen-Gang Zhu*, Hui-Juan Cui, Qing-Rong Zheng*, Gang Su*, Carbon71, 150-158 (2014).
2. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from AbInitio, Sheng-Ying Yue, Tao Ouyang, Ming Hu*, Scientific Reports 5,15440 (2015).
3. Methodology for determining the electronic thermal conductivity of metals via direction-equilibrium ab initio molecular dynamics, Sheng-Ying Yue, XiaoliangZhang, Stephen Stackhouse, Guangzhao Qin, Edoardo Di Napoli, and Ming Hu*, Phys. Rev. B 94, 075149 (2016).
4. Insight into the collective vibrational modes driving ultra-low thermal conductivity of perovskite solar cells, Sheng-Ying Yue, Xiaoliang Zhang, Guangzhao Qin, Jiayue Yang, and Ming Hu*, Phys. Rev. B 94, 115427 (2016).
5. Metric for strong intrinsic fourth-order phonon anharmonicity, Sheng-Ying Yue, XiaoliangZhang, Guangzhao Qin, Simon R. Phillpot*, and Ming Hu*, Phys. Rev. B 95, 195203(2017).
6. Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initio study, Sheng-YingYue, Guangzhao Qin, Xiaoliang Zhang, Xianlei Sheng, Gang Su*, and Ming Hu*, Phys. Rev. B 95, 085207 (2017).
7. Insight of the thermal conductivity of ε-iron earth's core conditions from the newly developed direct ab initio methodology, Sheng-YingYue*, and Ming Hu*, J. Appl. Phys. 125, 045102 (2019). (一作兼第一通訊, 同時該文章為當期JAP的coverpaper).
8. Controlling thermal conductivity of two-dimensional materials via externally induced phonon-electron interaction, Sheng-Ying Yue, Runqing Yang, and BolinLiao*, Phys. Rev. B 100, 115408 (2019).
9. Soft phonons and ultralow lattice thermal conductivity in the Dirac semimetal Cd3As2, Shengying Yue, Hamid T. Chorsi, Manik Goyal, Timo Schumann, RunqingYang, Tashi Xu, Bowen Deng, Susanne Stemmer, Jon A. Schuller, and Bolin Liao*, Phys. Rev. Research 1, 033101 (2019).
10. Electron-phonon interaction and superconductivity in the high-pressure cI16 phase of lithium from first principles, Sheng-Ying Yue, Long Cheng, Bolin Liao*, and Ming Hu*, Phys.Chem.Chem.Phys. 20, 27125 (2018).
11. Ultra-low thermal conductivity in a two-dimensional material due to surface-enhanced resonant bonding, Sheng-Ying Yue, Tashi Xu, Bolin Liao*, Materials Today Physics7, 89-95 (2018).
12. Origins of significant reduction of lattice thermal conductivity in graphene allotropes, Usama Choudhry#, Shengying Yue#, and Bolin Liao*, Phys. Rev. B 100,165401 (2019). (共同一作)
13. Nitrogen-Doped graphene-coated FeS2 microsphere composite as high-performance anode materials for sodium ion batteries enhanced by the chemical and structural synergistic effect, Tianyi Hou#, Shengying Yue#, Xiaohong Sun*, Anran Fan, YuanyuanChen, Mingjing Wang, Shu Cai, Chunming Zheng*, Bolin Liao*, Junmei Zhao, Applied Surface Science, 505,144633 (2020). (共同一作)
14. Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow ThermalConductivity for Thermoelectrics, Tianjun Liu#, Sheng-Ying Yue#, Sinclair Ratnasingham, Thibault Degousée, Pritesh Varsini, Joe Briscoe, Martyn A. McLachlan, Ming Hu, and Oliver Fenwick*, ACS Appl. Mater. Interfaces (2019),11, 50, 47507-47515. (共同一作)
15. New Insights into silicon Purification by Alloying-Leaching Refining: A Comparative Study of Mg-Si, Ca-Si, and Ca-Mg-Si Systems, Mengyig Zhu*, Shengying, Yue*, Kai, Tang*, Jafar, Safarian*, ACS Sustainable Chemistry & Engineering 8 (42),15953-15966 (2020). (共同通訊)
16. Phonon softening near topological phase transitions, Shengying Yue, Bowen Deng, Yanming Liu, YujieQuan, Runqing Yang, Bolin Liao*, Phys. Rev. B 102, 235428 (2020).
17. P removal from Si bySi-Ca-Al alloying-leaching refining: Effect of Al and the CaAl2Si2phase, Mengyi Zhu*, Shengying Yue*, Guixuan Wu*, Kai Tang, Yijiang Xu, Jafar Safarian, Separation and Purification Technology, 271, 118675, (2021).
18. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. XiaoliangZhang, Han Xie, Ming Hu*, Hua Bao*, Shengying Yue, Guangzhao Qin, andGang Su, Phys. Rev. B 89, 054310 (2014).
19.Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance, Guangzhao Qin, Qing-Bo Yan*, Zhenzhen Qin, Sheng-YingYue, Hui-Juan Cui, Qing-Rong Zheng, Gang Su*, Scientific Reports 4, 6946(2014).
20. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, GuangzhaoQin, Qing-Bo Yan*, Zhenzhen Qin, Sheng-Ying Yue, Ming Hu*, and Gang Su*, Phys.Chem. Chem. Phys. 17, 4854 (2014).
21. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene, Guangzhao Qin, Xiaoliang Zhang, Sheng-Ying Yue, Zhenzhen Qin, HuiminWang, Yang Han, and Ming Hu*, Phys. Rev. B 94, 165445 (2016).
22. Bidirectional effect of magnetic field on electronic thermal transport of metals from all-electron first-principles calculations, Jia-Yue Yang, Sheng-Ying Yue, and Ming Hu*, Phys. Rev. B 94, 235153 (2016).
23.Diverse anisotropy of phonon transport in two-dimensional group IV–VI compounds: A comparative study, Guangzhao Qin, Zhenzhen Qin, Wu-Zhang Fang, Li-Chuan Zhang, Sheng-Ying Yue, Qing-Bo Yan*, Ming Hu*, and Gang Su*, Nanoscale 8, 11306 (2016).
24.External electric field driving the ultra-low thermal conductivity of silicene, Guangzhao Qin, ZhenzhenQin, Sheng-Ying Yue, Qing-Bo Yan and Ming Hu*, Nanoscale 9, 7227 (2017).
25. Hydrodynamic PhononTransport Perpendicular to Diffuse-Gray Boundaries, Runqing Yang, ShengyingYue and Bolin Liao*, Nanoscale and Microscale Thermophysical Engineering,23:1, 25-35, (2019).
26. Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain, Alejandro Vega-Flick, Daehwan Jung, Shengying Yue, John E. Bowers*, and Bolin Liao*, Phys. Rev. Materials 3,034603 (2019).
27. Widely Tunable Optical and Thermal Properties of Dirac Semimetal Cd3As2, Hamid T. Chorsi, Shengying Yue, Prasad P. Iyer, Manik Goyal, Timo Schumann, SusanneStemmer*, Bolin Liao*, and Jon A. Schuller*, Adv. Optical Mater. (2020),1901192.
28. Electric field effect on the thermal conductivity of wurtzite GaN, Yujie Quan, Sheng-Ying Yue, Bolin Liao*, Appl. Phys. Lett. 118,162110 (2021).
29. Impact of Electron-Phonon Interaction on Thermal Transport: A Review, Yujie Quan, ShengyingYue, Bolin Liao*, Nanoscale and Microscale Thermophysical Engineering,1-18,(2021).
30. Crystal symmetry-based selection rules for anharmonic phonon-phonon scattering from a group theory formalism, Runqing Yang, Shengying Yue, Yujie Quan, Bolin Liao*, Phys. Rev. B 103, 184302 (2021).
31. Effect of bonding state of single atom iron on semi-coke on reduction of NO: A DFT study, Ruinan Wang, Xingxing Cheng*, Shengying Yue, Tien-Chien Jen, PreetamSingh, Zhiqiang Wang, Chem. Phys. Lett. 787, 139259 (2021).
32. Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance, Zhihui Zeng, Gang Wang, Brendan F Wolan, Na Wu, Changxian Wang, Shanyu Zhao, Shengying Yue, Bin Li, Weidong He, Jiurong Liu, Joseph W Lyding, Nano-micro letters, 14-1(2022).

相關詞條

熱門詞條

聯絡我們