岩石動力學基礎與套用

岩石動力學基礎與套用

《岩石動力學基礎與套用》是2014年科學出版社出版的圖書,作者是李夕兵。

基本介紹

  • 外文名:Rock Dynamics Fundamentals and Applications
  • 書名:岩石動力學基礎與套用
  • 作者:李夕兵
  • 出版日期:2014年6月1日
  • 開本:16
  • 出版社:科學出版社
  • 頁數:649頁
  • ISBN:7030404254
內容簡介,目錄,

內容簡介

為促進岩石動力學研究的進一步發展和深入,作者在原《岩石衝擊動力學》的基礎上,把近二十年來在岩石動力學基礎研究方面的工作進行了總結,形成該書第二版——《岩石動力學基礎與套用》。
全書共分15章,其中第1~4章系統介紹岩石動態試驗裝置與試驗技術、岩石衝擊試驗合理載入波形與試驗方法、合理載入波形反演設計與試驗系統數值模擬、動靜組合載入與溫壓耦合試驗技術;第5~8章主要論述衝擊載荷作用下的岩石力學特性、動靜組合載入下的岩石破壞特徵、岩石在應力波作用下的能量耗散及動靜載荷耦合作用下岩石破碎規律;第9~11章著重論述應力波在不同邊界結構面、含空區岩體及含石英類壓電岩體中的傳播;第12~15章主要論述高應力岩體的破裂特徵與有效利用、深部硬岩岩爆的動力學解釋與工程防護、岩體工程微震監測及應力波在岩土工程中的套用。

目錄

目錄
第1章 岩石動態試驗裝置與試驗技術 1
1.1 岩石準動態試驗裝置 2
1.1.1 快速載入試驗機原理 2
1.1.2 國內外研製的幾種快速載入試驗機 4
1.1.3 中應變率段(10s-1)的岩石試驗方法 9
1.2 岩石動態壓縮試驗裝置與試驗技術 18
1.2.1 霍普金森實驗的沿革與發展 18
1.2.2 霍普金森壓桿裝置試驗原理 19
1.2.3 岩樣應力均勻化的簡化分析 24
1.2.4 電腦化數據採集處理系統原理與方法 28
1.3 自行研製的岩石衝擊載入試驗系統 31
1.3.1 壓氣驅動的水平衝擊試驗機 31
1.3.2 氯氣驅動的大直徑衝擊試驗機 33
1.3.3 動態試驗測試系統 35
1.3.4 信號與數據處理軟體 37
1.4 霍普金森壓桿的變形裝置 39
1.4.1 三軸霍普金森壓桿 39
1.4.2 霍普金森拉桿 43
1.4.3 霍普金森扭桿 45
1.4.4 其他變形裝置 47
1.5 岩石類材料動態拉伸試驗方法 49
1.5.1 動態直接拉伸試驗 49
1.5.2 動態間接拉伸試驗 50
1.5.3 動態層裂試驗 53
1.6 岩石超動態試驗裝置簡述 56
1.6.1 幾種不同類型的試驗裝置 56
1.6.2 氣體炮的工作原理 57
1.6.3 平板撞擊試驗試件布置 60
參考文獻 62
第2章 岩石衝擊試驗合理載入波形與試驗方法 67
2.1 沖頭撞擊桿件產生的應力波形 67
2.1.1 簡單結構沖頭產生的應力波形 67
2.1.2 複雜沖頭撞擊桿件的電算方法 72
2.2 矩形波波形彌散與岩石動態應力應變曲線 80
2.2.1 不同形狀應力披在桿中傳播的彌散效應 80
2.2.2 矩形被載入的應力-應變曲線 86
2.2.3 不同載入波形下應力-應變-應變率關係 89
2.3 岩石類材料動態試驗的合理載入形式 91
2.3.1 錐形沖頭載入 91
2.3.2 紡錘形沖頭載入 94
2.3.3 試樣的恆應變率變形條件與試驗驗證 96
2.4 岩石恆應變率動態本構關係獲得的新方法 99
2.4.1 SHPB試驗數據的三維散點處理方法 99
2.4.2 試驗數據的三維散點結果的解釋 103
2.5 岩石動態測試的建議方法 104
2.5.1 試驗系統與參數 105
2.5.2 岩石動態抗壓強度測試 105
2.5.3 動態巴西試驗測試岩石抗拉強度 107
2.5.4 1 型動態斷裂韌度測試 108
參考文獻 110
第3章 合理載入波形反演設計與試驗系統數值模擬 113
3.1 已知波形的沖頭形狀反演理論 113
3.1.1 等截面圓柱沖頭撞擊彈性長桿產生的應力波 113
3.1.2 階梯狀變截面沖頭撞擊彈性長桿時所產生的應力波 115
3.1.3 連續變截面沖頭撞擊時所產生的應力波 116
3.1.4 基於一維應力被理論的沖頭形狀反演設計 118
3.2 半正弦波對應的沖頭結構反演 119
3.2.1 不同桿件尺寸的半正弦波沖頭反演設計 120
3.2.2 半正弦波載入下的岩石動態試驗 122
3.3 紡錘形沖頭SHPB 系統的應力波特性 123
3.3.1 不同接觸情況下桿中應力不均勻性分析 123
3.3.2 紡錘形沖頭偏心撞擊下SHPB 桿的動態回響 127
3.4 紡錘形沖頭岩石SHPB 試驗的校驗 131
3.4.1 紡錘形沖頭衝擊速率和人射應力的關係 131
3.4.2 紡錘形沖頭SHPB 系統校正步驟 133
3.5 半正弦波載入SHPB 系統數值模擬 134
3.5.1 紡錘形沖頭SHPB 數值模擬系統 135
3.5.2 顆粒流SHPB 動態數值模擬 139
3.5.3 應變率效應的影響 147
參考文獻 152
第4章 動靜組合載入與溫壓耦合試驗技術 155
4.1 岩石動靜組合載入試驗技術 155
4.1.1 靜載與微擾組合載入試驗技術 156
4.1.2 基於SHPB 的動靜組合載入試驗系統 158
4.2 溫壓耦合岩石動載試驗裝置與技術 162
4.2.1 溫壓耦合作用下岩石動態試驗裝置 163
4.2.2 試驗方法與操作過程 164
4.3 動靜載荷耦合破碎岩石試驗系統 165
4.3.1 功、靜載荷耦合破碎岩石試驗原理 165
4.3.2 動、靜載荷耦合破碎岩石試驗裝置 166
4.3.3 試驗裝置可行性驗證 169
4.4 岩石真三軸電液伺服誘變擾動試驗系統 170
4.4.1 試驗系統概述 170
4.4.2 試驗技術參數 174
參考文獻 175
第5章 衝擊載荷作用下的岩石力學特性 176
5.1 岩石的動態強度 176
5.1.1 岩石的應力應變關係 177
5.1.2 岩石動態強度與應變率的關係 177
5.1.3 載入波形和延續時間的影響 185
5.1.4 岩石動態強度的尺寸效應 186
5.2 岩石動態斷裂破壞準則 192
5.2.1 Grady-Kipp 模型 192
5.2.2 Steverding-Lehnigk 動態斷裂準則 197
5.3 岩石的動態損傷累積 200
5.3.1 應力被作用下的岩石疲勞損傷 201
5.3.2 循環衝擊下岩石的損傷規律 203
5.3.3 應力波在岩體中的衰減 205
5.4 高溫下的岩石動力學特性 208
5.4.1 高祖前後岩石密度及波速特性 208
5.4.2 高溫後岩石動態拉壓力學特性 209
5.4.3 高溫後岩石動態斷裂力學特性 215
參考文獻 217
第6章 動靜組合載入下的岩石破壞特徵 221
6.1 靜載與低頻擾動作用下的岩石力學特徵 221
6.1.1 一維動靜組合載入 221
6.1.2 二維動靜組合載入 224
6.1.3 動靜組合載入中動載荷頻率與強度的影響 227
6.2 靜壓與強動載組合作用下的岩石力學特性 231
6.2.1 相同動載不同靜載下岩石的力學特性 231
6.2.2 相同靜載不同動載下岩石的力學特性 234
6.2.3 圍壓對組合載入岩石力學特性的影響 235
6.3 動靜組合載入下的岩石本構模型 239
6.3.1 基本假設 239
6.3.2 一維動靜組合載入下岩石的本構模型 240
6.3.3 三維動靜組合載入下岩石的本構模型 241
6.3.4 岩石動靜組合載入本構關係的試驗驗證 245
6.4 溫壓耦合作用下的岩石動態力學特性 250
6.4.1 不同靜壓下岩石動態力學性質隨溫度變化規律 250
6.4.2 不同溫度岩石動態力學性質隨靜壓變化規律 253
6.4.3 溫壓耦合作用下岩石動態本構模型與數值驗證 255
參考文獻 257
第7章 岩石在應力波作用下的能量耗散 258
7.1 岩石衝擊破碎時的能量分布 258
7.2 岩石在不同載入波下的能量耗散 260
7.2.1 矩形波載入 261
7.2.2 指數衰減被載入 264
7.2.3 鐘形波載入 265
7.2.4 以彈性波形式無用耗散的能量值 267
7.2.5 延續時間和被形的影響 268
7.3 應力波作用下岩石的吸能效果 269
7.3.1 岩石吸能分析 269
7.3.2 人射能、反射能、透射能與岩石吸能 271
7.3.3 不同延續時同下的岩石吸能試驗結果 274
7.4 不同載入波形下岩石破碎的耗能規律 276
7.4.1 岩石耗能與入射能的關係 276
7.4.2 不同載入條件下的破碎程度 278
7.4.3 實現合理破岩的應力波體系 280
7.5 動靜組合載荷下岩石破壞的耗能規律 282
7.5.1 動靜組合載府下岩石能量計算與釋能規律 282
7.5.2 三維組合加卸載下的岩石能量吸收規律 285
7.5.3 圍壓卸載對岩石吸收能量的影響 286
參考文獻 287
第8章 動靜載荷耦合作用下岩石破碎特徵 290
8.1 動靜載荷耦合作用下破岩理論分析 290
8.1.1 動靜載荷耦合破岩特性曲線分析 290
8.1.2 動、靜載荷耦合作用的力學分析 292
8.1.3 動、靜載荷破岩的損傷斷裂分析 293
8.2 動靜載荷耦合作用下岩石破碎數值分析 299
8.2.1 靜載荷作用下岩石破碎的數值分析 300
8.2.2 衝擊載荷作用下岩石破碎的數值分析 301
8.2.3 動靜組合載荷作用下岩石破碎的數值分析 301
8.3 動靜載荷耦合作用下的破岩試驗 303
8.3.1 靜壓與衝擊耦合下的試驗 304
8.3.2 靜壓與衝擊耦合下的切削試驗 307
8.3.3 水射流與靜壓衝擊聯合作用破岩試驗 311
參考文獻 313
第9章 應力波在不同邊界結構面的傳播 315
9.1 一維縱波在桿性質突變處的反射與透射 315
9.2 完全黏結條件下縱橫波的折反射關係 317
9.2.1 波在自由邊界上的反射 317
9.2.2 波在兩種介質分界面上的反射和折射 322
9.3 可滑移條件下的折反射關係與岩體動力滑移準則 325
9.3.1 可滑移條件下的折反射關係 325
9.3.2 結構面上的能流分布與岩體動力滑移準則 331
9.3.3 爆破近區結構面的整體界面效應 334
9.4 應力波在閉合節理處的傳播 336
9.4.1 縱波線上性法向變形節理處的傳播 336
9.4.2 垂直縱波在非線性法向變形節理處的傳播 341
9.4.3 初始剛度和頻率對透反射係數的影響 342
9.5 應力波在張開節理處的傳播 346
9.5.1 應力披在張開節理處傳播的解析模型 346
9.5.2 不同應力波在張開節理處的能量傳遞規律 351
9.6 應力波在層狀岩體中的傳播 357
9.6.1 等效波阻法 357
9.6.2 應力波通過夾層後的透射應力波形 360
9.6.3 應力波遇夾層後的能量傳遞效果 365
9.7 爆轟波作用和岩石與炸藥的合理耦合準則 366
9.7.1 傳統的匹配觀點 367
9.7.2 藥卷爆轟與岩體的相互作用模型 368
9.7.3 岩石與炸藥的合理耦合準則~ 370
9.7.4 常規炸藥與不同岩體的合理匹配 373
參考文獻 376
第10章 應力波在含空區岩體中的傳播 378
10.1 爆炸在岩體中產生的應變波 378
10.1.1 線性炸藥爆炸的波形合成 378
10.1.2 測點位置與方向對波形的影響 381
10.1.3 爆炸成坑的半徑範圍 388
10.2 質點震動速率經驗公式與評估標準 389
10.2.1 不同岩石條件下的評估標準 389
10.2.2 質點震動峰值速率經驗公式 391
10.2.3 含有採空區的露天台階爆破實例 393
10.3 應力波在含空區岩體中傳播的數值模擬 398
10.3.1 幾何模型的建立 398
10.3.2 爆破荷載輸入方法 400
10.3.3 數值計算模型的建立 402
10.3.4 數值計算模型驗證 404
10.4 採空區動力穩定性分析 405
10.4.1 岩體表面應力波傳播 405
10.4.2 台階爆破下的採空區穩定性分析 407
10.4.3 最小安全距離 410
參考文獻 412
第11章 應力波在含石英類壓電岩體中的傳播 414
11.1 應力波與電磁波耦合的基本模型 414
11.1.1 力電耦合波動方程 414
11.1.2 應力波與電磁波的耦合理論 415
11.2 節理對岩體電磁輻射的影響 421
11.2.1 線性節理對電磁輻射的影響 421
11.2.2 非線性節理對電磁輻射的影響 423
11.2.3 節理對電磁輻射影響的計算與討論 424
11.3 岩石電磁輻射與岩石屬性參數的關係 428
11.3.1 岩石破裂裂紋寬度 428
11.3.2 電磁輻射頻率與岩石參數的關係 430
11.3.3 電磁輻射幅值與岩石參數的關係 431
11.4 應力波傳輸效應 434
11.4.1 耦合電磁波的頻率和強度 434
11.4.2 耦合電磁波的表面效應 435
11.4.3 臨強地震與岩石破裂時電磁異常現象的綜合 435
參考文獻 437
第12章 菌應力岩體的擾動破裂特徵與有效利用 440
12.1 高應力硬岩的板裂破壞 440
12.1.1 高應力硬岩板裂破壞的表現形式 440
12.1.2 硬岩單軸壓縮試驗下的板裂破壞 442
12.1.3 硬岩真三軸卸載試驗下的板裂破壞 450
12.2 衝擊載荷作用下的岩體層裂破壞 456
12.2.1 岩體層裂破壞的表現形式和發生條件 456
12.2.2 一維衝擊下的硬岩層裂破壞 458
12.2.3 層裂破壞過程的損傷演化關係 460
12.3 動力擾動下高應力礦柱的破壞特徵 462
12.3.1 深部礦柱動力擾動的力學模型 462
12.3.2 深部礦柱動力擾動的三維數值分析 465
12.3.3 深部礦柱應變能隨擾動峰值的變化特徵 469
12.4 高應力岩體分區破裂特徵與動力學解釋 470
12.4.1 高應力岩體分區破裂的研究現狀 471
12.4.2 高應力岩體強卸荷的非連續破壞特徵 475
12.4.3 高應力岩體載入的非連續破壞特徵 482
12.5 高應力岩體誘導致裂與非爆連續開採 487
12.5.1 非爆連續開採理念與套用進展 487
12.5.2 岩體卸荷誘導致裂理論與套用 488
12.5.3 誘導致裂非爆連續開採可行性初探 491
參考文獻 496
第13章 深部硬岩岩爆的動力學解釋與工程防護 499
13.1 岩爆產生條件與發生判據 499
13.1.1 國內外岩爆研究述評 499
13.1.2 岩爆誘因的靜力學條件與判據 501
13.1.3 硬岩深部開採動力擾動與誘發岩爆 505
13.2 彈性儲能釋放的岩爆發生判據 508
13.2.1 一維動靜組合載入試驗的岩石能量分析 508
13.2.2 基於擾動載荷下動靜能量指標的岩爆發生判據 513
13.2.3 高應力岩體動力擾動下岩爆發生的試驗室重現 514
13.3 有岩爆傾向性高應力岩體的支護 518
13.3.1 基於動力學的岩體支護系統 518
13.3.2 基於自穩時變結構的岩爆動力源分析 521
13.3.3 動靜組合支護關鍵技術 527
13.3.4 巷道動靜組合支護實例 531
參考文獻 533
第14章 礦山岩體工程微震監測 536
14.1 微震監測原理 536
14.1.1 震源定位 536
14.1.2 主要微震參數 537
14.1.3 微震源機制 540
14.2 監測網的確定及最佳化 542
14.2.1 重點監測區域確定 542
14.2.2 礦區應力三維數值分析 543
14.2.3 監測點位置分布及最佳化方案 546
14.3 無需預先測速的微震震源定位理論 556
14.3.1 傳統定位方法數學擬合形式 556
14.3.2 無需預先測速率的微震定位的數學形式 558
14.3.3 誤差分析及算例 560
14.3.4 現場微震震源定位的爆破試驗及分析 565
14.4 大規模開採礦山區域性危險地震預測 567
14.4.1 地震視應力和位移特性 567
14.4.2 區域性地震成核預測模型 570
14.4.3 應力狀態和變形參數時間序列 572
參考文獻 574
第15章 應力波理論在岩土工程中的套用 578
15.1 衝擊破岩 578
15.1.1 衝擊破岩機械的受力和效率分析 579
15.1.2 人射應力波形對能量傳遞效率的影響 591
15.1.3 衝擊鑿入系統的電算模擬 593
15.1.4 衝擊鑿岩機具設計中的幾個問題 596
15.2 樁基工程 598
15.2.1 應力波在樁基中的發展過程 598
15.2.2 波動理論在樁基工程中的套用 600
15.2.3 動測法存在的問題 609
15.3 強夯 610
15.3.1 強夯引起的波動與加固原理 611
15.3.2 錘重、落距與加固深度的關係 614
15.3.3 散體岩料的動壓固效果 616
15.4 岩土工程中的無損檢測 622
15.4.1 混凝土無損檢測 622
15.4.2 錨桿無損檢測 626
15.5 防護工程 629
15.5.1 爆炸波對地下坑道的破壞機理 629
15.5.2 坑道安全防護層厚度計算方法 631
15.5.3 地下硐室抗爆設計 633
參考文獻 638
索引 640
彩圖
CONTENTS
Preface
CHAPTER 1 ROCK DYNAMIC TEST APPARATUS AND TEST TECHNOLOGY 1
1.1.1 Principle of rapid loading device 2
1.1.2 Several rapid loading devices 4
1.1.3 Rock testing methods at intermedium strain rate(lOs-1) 9
1.2 Rock dynamic compressive test device and test technology 18
1.2.1 Evolution and development of SHPB 18
1.2.2 Test principle of SHPB device 19
1.2.3 Simplified analysis on stress uniformity for rock samples 24
1.2.4 Principle and method of data auto-acquisilion and processing system 28
1.3 Rock impact loading test system 31
1.3.1 Horizontal impact testing machine driven by pneumatics 31
1.3.2 Large diameter impact testing machine driven by nitrogen 33
1.3.3 Measuring system for dynamic tests 35
1.3.4 Signal and data processing sotware 37
1.4 Modified configurations of SHPB 39
1.4.1 Triaxial split Hopkinson pressure bar 39
1.4.2 Split Hopkinson tensile bar 43
1.4.3 Split Hopkinson torsion bar 45
1.4.4 Some other modified devices 47
1.5 Dynamic r.ensile test methods for rock-like materials 49
1.5.2 Indirect dynamic tensile test 50
1.6 Ultra-dynamic test instrumentations for rocks 56
1.6.1 Several differern types of test devices 56
1.6.2 Testing principle of gas gun 57
1.6.3 Specimen layout of plaie impact test 60
References 62
CHAPTER 2REASONABLE LOADING WAVEFORMS FOR ROCK IMPACT TEST AND ROCK DYNAMIC TEST METHODS 67
2.1 Stress waveform generated by pistons 67
2.1.2 Computing method of waveform generated by complex pistons 72
2.2 Dispersion of rect.angular waves and rock dynamic sl.ress-strain curves 80
2.2.1 Dispersion of propagation of different waves in rocks 80
2.2.2 Stress-strain curves of rocks obtained by SHPB with rectangular loading 72
2.2.3 Stress-strain-strain rate relationships of rocks under diferent loading waves 89
2.3 Reasonable loading ways for dynamic tests of rock-like materials 91
2.3.2 Half-sine wave loading generated by a special piston 94
2.3.3 Loading conditions for constant stain rate and experimental verification 96
2.4 New method for obtaining constitutive relations of rock at constant strain rate 99
2.4.1 Three-dimensional scatter processing method for vSHPB test data 99
2.4.2 Explanation of three-dimensional scatter processing results 103
2.5 Suggested dynamic test methods for rocks 104
2.5.1 Test system and parameters 105
2.5.2 Dynamic compressive test 105
2.5.3 Dynamic tensile test with Brazilian disc method 107
2.5.4 Dynamic fracture toughness (model) test 108
References 110
CHAPTER 3INVERSE DESIGN FOR REASONABLE LOADING WAVEFORMS AND NUMERICAL SIMULATION OF TEST SYSTEM 113
3.1 Inverse design theory for piston geometry with given waveform 113
3.1.1 Stress waveform by impact of cylindrical piston on long rod 113
3.1.2 Stress waveform by impact of variable cross-section cylindrical piston on long rod 115
3.1.3 Stress waveform by impact of conical piston on long rod 116
3.1.4 Inverse design for piston geometry based on one-dimensional stress wave theory 118
3.2 Piston design corresponding to half-sine wave 119
3.2.1 Inverse design of different size piston generating half-sine wave 120
3.2.2 Dynamic tests of rock by half-sine waves loading 122
3.3 Stress wave characteristics in SHPB system with half-since wave loading 123
3.3.1 Stress uniformity analysis of rod with different contact conditions 123
3.3.2 Dynamic response of SHPB by eccentric impact of a special piston on rod 127
3.4 Calibration of SHPB test wirh special pisl.on generating half-sine
3.4.1 Relationship between piston impact velocity and incident stress 131
3.4.2 Calibration steps for SHPB system with special piston 133
3.5 Numerical simulation of SHPB system with half-sine waveform 134
3.5.1 Numerical model of SHPB system with half-sine waveform 135
3.5.2 Numerical simulation of SHPB by particle flow method 139
3.5.3 Influence of strain rate effect 147
References 152
CHAPTER 4TEST TECHNIQUE UNDER COUPLED STATIC-DYNAMIC LOADS AND THERMAL-MECHANICAL CONDITIONS 155
4.1 Test technique for rocks under coupled static-dynamic loads 155
4.1.1 Test technique under static load and low frequency dynamic disturbance 156
4.1.2 Test system for coupled static-dynamic loads based on SHPB 158
4.2 Rock dynamic test device and r.echnology under coupled thermalmechanical condition 162
4.2.1 Rock dynamic test device under coupled thermal-mechanical condition 163
4.2.2 Experimental setup and procedure 164
4.3 Test system for rock fragmentation under combined static-dynamic loads 165
4.3.1 Test principle of rock fragmentation under combined static-dynamic loads 165
4.3.2 Test equipment of rock fragmentation under combined static-dynamic loads 166
4.4 True triaxial test system for rocks under induced disturbance 170
4.4.1 Test system description 170
4.4.2 Technical parameters of test system 174
References 175
CHAPTER 5 MECHANICAL PROPERTIES OF ROCKS UNDER IMPACT LOADS 176
5.1 Rock dynamic strength 176
5.1.1 Stress-strain relationship of rocks 177
5.1.2 Relationship beiween rock dynamic strength and strain rate 177
5.1.3 Effects of loading waveform and duration time 185
5.1.4 Size effects on rock dynamic 186
5.2 Dynamic fracture criterion of rocks 192
5.2.1 Grady-Kipp model 192
5.2.2 Steverding ehnigk dynamic fracture criterion 197
5.3 Accumulation of rock dynamic damage 200
5.3.1 Fatigue damage of rock by stress wave loading 201
5.3.2 Damage evolution law of rock under repeated impact 203
5.4 Dynamic mechanical properties of rocks at high temperature 208
5.4.1 Thermal effect on density and wave velocity of rocks 208
5.4.2 Thermal effect on dynamic tensile and compressive properties of rocks 209
5.4.3 Thermal efect on dynamic fracture properties of rocks 215
References 217
CHAPTER 6 FAILURE CHARACTERISTICS OF ROCK UNDER COUPLED STATIC-DYNAMIC LOADS 221
6.1 Mechanical properties of rock under static load and low frequency disturbance 221
6.1.1 One-dimensional coupled loads 221
6.1.2 Two-dimensional coupled loads 224
6.1.3 Inluence of frequency and magnitude of dynamic loads 227
6.2 Mechanical properties of rock under coupled static load and impact load 231
6.2.1 Influence of static load with constant impact load 231
6.2.2 Influence of impact load with constant static load 234
6.3 Constitutive models of rock under coupled static-dynamic loads 239
6.3.1 Basicassumptions 239
6.3.2 Rock constitutive models under one-dimensional coupled static-dynamic loads240
6.3.3 Rock constitutive models under three-dimensional coupled static-dynamic loads 241
6.3.4 Verification of constitutive models by tests 245
6.4 Rock dynamic propert.ies under coupled thermal-mechanical effects 250
6.4.1 Influence of temperature wirh certain static pressure 250
6.4.2 Influence of static pressure with certain temperature 253
6.4.3 Dynamic constnutive model of rock under coupled thermal-mechanical effects 255
References 257
CHAPTER 7 DISSIPATION OF STRESS WAVE ENERGY IN ROCKS 258
7.1 Energy distribur.ion in rock dynamic fragmentation 258
7.2 Energy dissipation in rock by different stress waves loading 260
7.2.1 Loading in rectangular wave 261
7.2.2 Loading in exponential wave 264
7.2.3 Loadinginbellwave 265
7.2.4 Useless dissipated elastic wave energy value in rocks 267
7.2.5 Effects of duration time and waveforms 268
7.3 Absorption of energy of stress wave in rocks 269
7.3.1 Analysis of energy absorption in rocks 269
7.3.2 Incident, reflection, transmission and absorption energy in rocks 271
7.3.3 Testing results of absorption energy of stress wave with different duration time in rocks 274
7.4 Energy dissipation in rock loading by stress wave with different loading waveforms 276
7.4.1 Relationship between energy consumption in rock and incident energy 276
7.4.2 Degree of fragmentation at different loading conditions 278
7.4.3 Stress wave form to achieve maximum rock fragmentation 280
7.5 Energy consumption law for rock failure under coupled staticdynamic loads 282
7.5.1 Calculation and test results of energy release in rock under coupled staticdynamicloads 282
9.2 Reflecr.ion and refraction of P-wave and S-wave alfully bonded interfaces 317
9.2.1 Wave reflection on free surface 317
9.2.2 Wave reflection and refraction at interface of two medium 322
9.3 Wave reflection and refraction at slippery interface and dynamic slip criterion of rock mass 325
9.3.1 Wave relection and reraction at slippery interface 325
9.3.2 Energy flow distribution at interface and dynamic slip criterion of rock mass 331
9.3.3 0verall effects of interface near blasting source 334
9.4 Stress wave propagation at closed joints 336
9.4.1 P-wave propagation at joints with linear normal deformation 336
9.4.2 Vertical incident P-wave propagation at joints with non-linear normaldeformation 341
9.4.3 Effect of iniiial stiffness and frequency on reflecrion and transmission factors 342
9.5 Srress wave propagat.ion at open joints 346
9.5.1 Analytical model of slress wave propagation at open joinls 346
9.5.2 Energy transmission of stress waves with different waveforms at open joints 351
9.6 Stress wave propagation in layered rock mass 357
9.6.1 Equivalent wave impedance method 357
9.6.2 Transmitted waveform of stress wave propagated in sandwich structure 360
9.6.3 Energy transfer of stress wave through interlayer 365
9.7 Detonation wave and reasonable matching criterion between rock explosive 366
9.7.1 Traditional viewpoint of reasonable impedance matching 367
9.7.2 Interaction model of explosive detonation in rock mass 368
9.7.3 Reasonable impedance matching criterion between rock and explosive 370
9.7.4 Reasonable impedance matching between conventional explosives and different rock mass 373
References 376
CHAPTER 10 STRESS V~AVE PROPAGMION IN ROCK MASS WITH CAWIY 378
10.1 Strain waves generated by blasting in rock mass 378
10.1.1 Synthesis of wave forms generated by a linear explosive charge 378
10.1.2 Effects of position and orientation on the wave shapes 381
10.2 PPV empirical formula and damage crileria 389
10.2.1 PPV damage criterion in different rock conditions 389
10.2.3 Bench blasting in open-pit mine wirh cavity 393
10.3 Numerical simulation of stress wave propagation in rock mass with cavity 398
10.3.1 Geometric model 398
10.3.2 Input of blastingload 400
10.3.3 Numericalmodel 402
10.4 Srabiliry analysis of cavil.y under bench blasting 405
10.4.1 Stress propagation on ground surface 405
10.4.2 Stability analysis of cavity under bench blasting 407
10.4.3 Calculation of the mimmun safety distance 410
References 412
CHAPTER 11 STRESS WAVE PROPAGATION IN PIEZOELECTRIC ROCK MASS CONTAING QUARTZ 414
11.1 Coupled model between stress wave and electromagnetic wave 414
11.1.1 Coupled mechanical-electrical wave equations 414
11.1.2 Coupled theory beiween stress wave and elecrromagnetic wave 415
11.2 Effect of joint on electromagneiic emission in rock mass 421
11.2.1 Effect of linear joint on electromagnetic emission 421
11.2.2 Effect of non-linear joint on electromagnetic emission 423
11.2.3 Calculation and discussion of joint effecr on electromagnetic emission 424
11.3 Relationship between electromagner.ic emission and rock parameters 428
11.3.2 Relationship between electromagnetic emission frequency and rock parameters 430
11.3.3 Relationship between elecrromagnetic ermssion amplitude and rock mass parameters 431
11.4.1 Frequency and amplitude of electromagnetic emission 434
11.4.2 Surface effects of electromagnetic emission 435
11.4.3 Analysis on abnormal electromagnetic emission for strong shocks or at rock fracture 435
References 437
CHAPTER 12 DYNAMIC CHARACTERISTICS OF HIGHLY STRESSED ROCK MASS AND EFFECTIVE UTILIZATION OF HIGH STRESS 440
12.1 Slabbing failure of highly stressed hard rock 440
12.1.1 Performance of slabbing failure for highly stressed hard rock 440
12.1.2 Slabbing failure of hard rock under uniaxial compression 442
12.1.3 Slabbing failure of hard rock under true triaxial compression with unloading process 450
12.2 Spalling failure of rock mass under impact 456
12.2.1 Performance of spalling failure and occurrence condition 456
12.2.2 Spalling failure of hard rock under one-dimensional impact 458
12.2.3 Damage evolutionary relationship during spalling failure process 460
12.3 Failure characterist.ics of highly sr.ressed pillar under dynamic
12.3.1 Mechanical model of mining pillar under dynamic disturbance 462
12.3.2 3D numerical analysis of mining pillar under dynamic disturbance 465
12.3.3 Strain energy variation in mining pillar under different dynamic disturbance 469
12.4 Zonal disintegration of highly stressed rock mass and kinetic interpretation 470
12.4.1 Review of zonal disintegration in highly stressed rock mass 471
12.4.2 Discontinuous failure of highly stressed rock mass under unloading process 475
12.4.3 Discontinuous failure of highly stressed rock mass under excavation loadingprocess 482
12.5 Induced fracture and non-blasting continuous mining for highly-stressed rock mass 487
12.5.1 Concept and application of non-blasting continuous mining 487
12.5.2 Theory and application of induced racture by unloading in rock mass 488
12.5.3 Feasibility on non-blasting continuous mining by inducing rock fracture 491
References 496
CHAPTER 13 DYNAMIC INTERPRETATION OF ROCKBURST IN HARD ROCK AT GREAT DEPTH AND ENGINEERING PROTECTION 499
13.1 Occurrence conditions and criteria of rockburst 499
13.1.2 Mechanical conditions and criteria of rock burst 501
13.1.3 Dynamic disturbance and induced rock burst in deep mining 505
13.2 Elastic energy release criterion of rock burst 508
13.2.1 Rock energy analysis in one-dimensional coupled static-dynamic loading tes 508
13.2.2 Rock burst occurrence criterion based on both static and dynamic energy index 513
13.2.3 Laboratory simulation of rockbursi in highly siressed rock mass under dynamic disturbance 514
13.3 Rock support technology for burst-prone and highly stressed rock mass 518
13.3.1 Rock support system based on dynamics 518
13.3.2 Power source analysis for rockburst based on self-stabiliry and lime-varying structure 521
13.3.3 Support technology based on coupled static and dynamic loads 527
13.3.4 Support case based on coupLed static and dynamic loads 531
References 533
CHAPTER 14 MICROSEISMIC MONITORING IN MINING ENGINEERING 536
14.1 Theory of microseismic monitoring 536
14.1.1 Hypocentral10cation 536
14.1.2 Main microseismic parameters 537
14.1.3 Focalmechanism 540
14.2 Determination and optimization of monitoring network 542
14.2.1 Detennination of focused area 542
14.2.2 Numerical analysis of three-dimensional srress in mmes 543
14.2.3 Positional distribution and optimization of sensors 546
14.3 Theory of hypocentral location without pre-measured wave velocity 556
14.3.1 Mathematical fitting equations of traditional methods 556
14.3.2 Mathematical firting equations of hypocenrral locar.ion without pre-measured wave velocity 558
14.3.3 Error analysis and case study 560
14.3.4 Blasting experiments in situ and corresponding analysis 565
14.4 Areal hazardous seismic prediction in large-scale mining 567
14.4.1 Characteristics of apparent stress and deformation 567
14.4.2 Conceptual model of seismic nucleation for areal seismology 570
14.4.3 Time series o stress state and deformation 572
References 574
CHAPTER 15 APPLICATION OF STRESS WAVE THEORY IN GEOTECHNICAL ENGINEERING 578
15.1 Rock fragmentation by impact 578
15.1.1 Analysis on force and efficiency of impact drill machine 579
15.1.2 Influence of incident stress waveform on energy transfer efficiency 591
15.1.3 Computer simulation of percussive penetration system 593
15.1.4 Several problems on design of drilling machine 596
15.2 Pile foundation engineering 598
15.2.1 Development process of stress wave theory in pile foundation 598
15.2.2 Application of wave theory in pile foundation engineering 600
15.2.3 Problems of dynamic pile test method 609
15.3 Dynamic compaction 610
15.3.1 Induced wave by dynamic compaction and reinforcing principle 611
15.3.2 Relationship between hammer weight, drop height and reinforcing depth 614
15.3.3 Dynamic reinforcing effects of granular rock material 616
15.4 Nondestructive testing in geotechnical engineering 622
15.4.1 Nondestructive testing for concrete 622
15.4.2 Nondestructive testing for rock bolts 626
15.5 Protection engineering 629
15.5.1 Failure mechanism of underground tunnels by blasting wave 629
15.5.2 Calculation methods for safety protective layer thickness of tunnels 631
15.5.3 Anti-explosion design of underground chambers 633
References 638
INDEX 640
COLOR FIGURES

相關詞條

熱門詞條

聯絡我們