加權均方

加權平均數是不同比重數據的平均數,加權平均數就是把原始數據按照合理的比例來計算,若n個數中,x1出現f1次,x2出現f2次,…,xk出現fk次,那么(x1f1+x2f2+...xkfk)/f1+f2+...+fk叫做x1,x2,…,xk的加權平均數。f1,f2,…,fk是x1,x2,…,xk的權.

資料,相關資料,

資料

舉個例子,大興公司2005年期初存貨10000件,成本為40000元,本期銷貨60000件。本期進貨情況如下;日期單價數量4月7日4.10元20000件5月18日4.15元30000件9月6日4.21元20000件11月20日4.25元8000件採用加權平均法
加權平均法:發出存貨的單位成本=(40000+20000*4.1+30000*4.15+20000*4.21+8000*4.25)/(10000+20000+30000+20000+8000)=4.1443
發出存貨成本=60000*1.1443=68658元
本期分錄:
借:現金貸:主營業務收入
結轉成本:借:主營業務成本68658貸:原材料68658
一次性加權平均法是相對於移動加權平均法來說的,一次性加權平均法是一個會計期間只採用一次以上這種加權計算法。
而移動加權平均法是每次銷售的時候都要按加權計算法計算。假如一個月內賣10次貨,那么一次加權平均法是月底內用加權算法計算一次,而移動是每次賣貨都要用加權算法計算。移動加權平均法在頻繁銷貨的時候計算量很大。

相關資料

加權平均數的概念
簡單的例子就是:
你的小測成績是80分,期末考成績是90分,老師要計算總的平均成績,就按照小測40%、期末成績60%的比例來算,所以你的平均成績是:
80×40%+90×60%=86
學校食堂吃飯,吃三碗的有x人,吃兩碗的有y人,吃一碗的z人。平均每人吃多少?
(3*x+2*y+1*z)/(x+y+z)
這裡3、2、1分別就是權數值,“加權”就是考慮到不同變數在總體中的比例份額。
=============================
當一組數據中的某些數重複出現幾次時,那么它們的平均數的表示形式發生了一定的變化.例如,某人射擊十次,其中二次射中10環,三次射中8環,四次射中7環,一次射中9環,那么他平均射中的環數為
(10*2+9*1+8*3+7*4)/10=8.1
這裡,7,8,9,10這四個數是射擊者射中的幾個不同環數,但它們出現的頻數不同,分別為4,3,l,2,數據的頻數越大,表明它對整組數據的平均數影響越大,實際上,頻數起著權衡數據的作用,稱之為權數或權重,上面的平均數稱為加權平均數,不難看出,各個數據的權重之和恰為10.
在加權平均數中,除了一組數據中某一個數的頻數稱為權重外,權重還有更廣泛的含義.
比如在一些體育比賽項目中,也要用到權重的思想.比如在跳水比賽中,每個運動員除完成規定動作外,還要完成一定數量的自選動作,而自選動作的難度是不同的,兩位選手由於所選動作的難度係數不同,儘管完成各自動作的質量相同,但得分也是不相同的,難度係數大的運動員得分應該高些,難度係數實際上起著權重的作用.
而普通的算術平均數的權重相等,都是1,(比如,3和5的平均數為4)也就是說它們的重要性相同,所以平均數是特殊的加權平均數.
加權平均數的概念
加權平均數是不同比重數據的平均數,用表示。計算公式如下:
(4.3)
在這裡,表示各觀察值的權重;
表示具有不同比重的觀察值。
加權平均數的計算方法
例1,某學生某科平時考試成績為80分,期中考試成績為90分,期末考試成績為95分。按學校規定學期成績中平時成績占20%,期中考試成績占30%,期末考試成績占50%。問該學生學期總評成績應為多少分?
所以,該學生學期總評成績為90.5分。
例2,某年級各班的一次考試成績如下表,求全年級的總平均分。
按公式(4.3)計算如下:
所以,全年級的總平均分為69.4

相關詞條

熱門詞條

聯絡我們