本書的主要內容包括光的波動特性,介質波導和光纖,半導體科學基礎和LED,光放大器和雷射器,光探測器和圖像感測器,光的偏振和調製等。每個章節除了基本的題材,還給出一些附加主題適當介紹先進技術和產品化光電子器件實例,擴大和深化讀者對基本內容的理解。該書力求採用儘可能少的數學推導而強調通過物理概念來說明原理,提供了許多例題,使得課本概念與實際器件相聯繫,也提供了大量的練習題。
基本介紹
- 書名:光電子學與光子學原理與實踐(第二版)(英文版)
- ISBN:9787121202933
- 出版社:電子工業出版社
- 出版時間:2013-05-01
圖書內容,目錄,
圖書內容
本書的主要內容包括光的波動特性,介質波導和光纖,半導體科學基礎和LED,光放大器和雷射器,光探測器和圖像感測器,光的偏振和調製等。每個章節除了基本的題材,還給出一些附加主題適當介紹先進技術和產品化光電子器件實例,擴大和深化讀者對基本內容的理解。該書力求採用儘可能少的數學推導而強調通過物理概念來說明原理,提供了許多例題,使得課本概念與實際器件相聯繫,也提供了大量的練習題。
目錄
Contents
Chapter 1 Wave Nature of Light 19
1.1 Light Waves in a Homogeneous Medium 19
A. Plane Electromagnetic Wave 19
B. Maxwell’s Wave Equation and Diverging Waves 22
Example 1.1.1 A diverging laser beam 26
1.2 Refractive Index and Dispersion 26
Example 1.2.1 Sellmeier equation and diamond 29
Example 1.2.2 Cauchy equation and diamond 30
1.3 Group Velocity and Group Index 30
Example 1.3.1 Group velocity 33
Example 1.3.2 Group velocity and index 33
Example 1.3.3 Group and phase velocities 34
1.4 Magnetic Field, Irradiance, and Poynting Vector 34
Example 1.4.1 Electric and magnetic fields in light 37
Example 1.4.2 Power and irradiance of a Gaussian beam 37
1.5 Snell’s Law and Total Internal Reflection (TIR) 38
Example 1.5.1 Beam displacement 41
1.6 Fresnel’s Equations 42
A. Amplitude Reflection and Transmission Coefficients (r and t ) 42
B. Intensity, Reflectance, and Transmittance 48
C. Goos-Hänchen Shift and Optical Tunneling 49
Example 1.6.1 Reflection of light from a less dense medium (internal
reflection) 51
Example 1.6.2 Reflection at normal incidence, and internal and external
reflection 52
Example 1.6.3 Reflection and transmission at the Brewster angle 53
1.7 Antireflection Coatings and Dielectric Mirrors 54
A. Antireflection Coatings on Photodetectors and Solar Cells 54
Example 1.7.1 Antireflection coating on a photodetector 55
B. Dielectric Mirrors and Bragg Reflectors 56
Example 1.7.2 Dielectric mirror 58
1.8 Absorption of Light and Complex Refractive Index 59
Example 1.8.1 Complex refractive index of InP 62
Example 1.8.2 Reflectance of CdTe around resonance absorption 63
1.9 Temporal and Spatial Coherence 63
Example 1.9.1 Coherence length of LED light 66
1.10 Superposition and Interference of Waves 67
1.11 Multiple Interference and Optical Resonators 69
Example 1.11.1 Resonator modes and spectral width of a semiconductor
Fabry–Perot cavity 73
1.12 Diffraction Principles 74
A. Fraunhofer Diffraction 74
Example 1.12.1 Resolving power of imaging systems 79
B. Diffraction Grating 80
Example 1.12.2 A reflection grating 83
Additional Topics 84
1.13 Interferometers 84
1.14 Thin Film Optics: Multiple Reflections in Thin Films 86
Example 1.14.1 Thin film optics 88
1.15 Multiple Reflections in Plates and Incoherent Waves 89
1.16 Scattering of Light 90
1.17 Photonic Crystals 92
Questions and Problems 98
Chapter 2 Dielectric Waveguides and Optical Fibers 111
2.1 Symmetric Planar Dielectric Slab Waveguide 111
A. Waveguide Condition 111
B. Single and Multimode Waveguides 116
C. TE and TM Modes 116
Example 2.1.1 Waveguide modes 117
Example 2.1.2 V-number and the number of modes 118
Example 2.1.3 Mode field width, 2wo 119
2.2 Modal and Waveguide Dispersion in Planar
Waveguides 120
A. Waveguide Dispersion Diagram and Group Velocity 120
B. Intermodal Dispersion 121
C. Intramodal Dispersion 122
2.3 Step-Index Optical Fiber 123
A. Principles and Allowed Modes 123
Example 2.3.1 A multimode fiber 128
Example 2.3.2 A single-mode fiber 128
B. Mode Field Diameter 128
Example 2.3.3 Mode field diameter 129
C. Propagation Constant and Group Velocity 130
Example 2.3.4 Group velocity and delay 131
D. Modal Dispersion in Multimode Step-Index Fibers 132
Example 2.3.5 A multimode fiber and dispersion 132
2.4 Numerical Aperture 133
Example 2.4.1 A multimode fiber and total acceptance angle 134
Example 2.4.2 A single-mode fiber 134
2.5 Dispersion In Single-Mode Fibers 135
A. Material Dispersion 135
B. Waveguide Dispersion 136
C. Chromatic Dispersion 138
D. Profile and Polarization Dispersion Effects 138
Example 2.5.1 Material dispersion 140
Example 2.5.2 Material, waveguide, and chromatic dispersion 141
Example 2.5.3 Chromatic dispersion at different wavelengths 141
Example 2.5.4 Waveguide dispersion 142
2.6 Dispersion Modified Fibers and Compensation 142
A. Dispersion Modified Fibers 142
B. Dispersion Compensation 144
Example 2.6.1 Dispersion compensation 146
2.7 Bit Rate, Dispersion, and Electrical and Optical Bandwidth 146
A. Bit Rate and Dispersion 146
B. Optical and Electrical Bandwidth 149
Example 2.7.1 Bit rate and dispersion for a single-mode fiber 151
2.8 The Graded Index (GRIN) Optical Fiber 151
A. Basic Properties of GRIN Fibers 151
B. Telecommunications 155
Example 2.8.1 Dispersion in a graded index fiber and bit rate 156
Example 2.8.2 Dispersion in a graded index fiber and bit rate 157
2.9 Attenuation in Optical Fibers 158
A. Attenuation Coefficient and Optical Power Levels 158
Example 2.9.1 Attenuation along an optical fiber 160
B. Intrinsic Attenuation in Optical Fibers 160
C. Intrinsic Attenuation Equations 162
Example 2.9.2 Rayleigh scattering equations 163
D. Bending losses 164
Example 2.9.3 Bending loss for SMF 167
2.10 Fiber Manufacture 168
A. Fiber Drawing 168
B. Outside Vapor Deposition 169
Example 2.10.1 Fiber drawing 171
Additional Topics 171
2.11 Wavelength Division Multiplexing: WDM 171
2.12 Nonlinear Effects in Optical Fibers and DWDM 173
2.13 Bragg Fibers 175
2.14 Photonic Crystal Fibers—Holey Fibers 176
2.15 Fiber Bragg Gratings and Sensors 179
Example 2.15.1 Fiber Bragg grating at 1550 nm 183
Questions and Problems 183
Chapter 3 Semiconductor Science and Light-Emitting Diodes 195
3.1 Review of Semiconductor Concepts and Energy Bands 195
A. Energy Band Diagrams, Density of States, Fermi–Dirac
Function and Metals 195
B. Energy Band Diagrams of Semiconductors 198
3.2 Semiconductor Statistics 200
3.3 Extrinsic Semiconductors 203
A. n-Type and p-Type Semiconductors 203
B. Compensation Doping 206
C. Nondegenerate and Degenerate Semiconductors 207
D. Energy Band Diagrams in an Applied Field 208
Example 3.3.1 Fermi levels in semiconductors 209
Example 3.3.2 Conductivity of n-Si 209
3.4 Direct and Indirect Bandgap Semiconductors:
E–k Diagrams 210
3.5 pn Junction Principles 214
A. Open Circuit 214
B. Forward Bias and the Shockley Diode Equation 217
C. Minority Carrier Charge Stored in Forward Bias 222
D. Recombination Current and the Total Current 222
3.6 pn Junction Reverse Current 225
3.7 pn Junction Dynamic Resistance and Capacitances 227
A. Depletion Layer Capacitance 227
B. Dynamic Resistance and Diffusion Capacitance
for Small Signals 229
3.8 Recombination Lifetime 230
A. Direct Recombination 230
B. Indirect Recombination 232
Example 3.8.1 A direct bandgap pn junction 232
3.9 pn Junction Band Diagram 234
A. Open Circuit 234
B. Forward and Reverse Bias 236
Example 3.9.1 The built-in voltage from the band diagram 237
3.10 Heterojunctions 238
3.11 Light-Emitting Diodes: Principles 240
A. Homojunction LEDs 240
B. Heterostructure High Intensity LEDs 242
C. Output Spectrum 244
Example 3.11.1 LED spectral linewidth 247
Example 3.11.2 LED spectral width 248
Example 3.11.3 Dependence of the emission peak and linewidth
on temperature 249
3.12 Quantum Well High Intensity LEDs 249
Example 3.12.1 Energy levels in the quantum well 252
3.13 LED Materials and Structures 253
A. LED Materials 253
B. LED Structures 254
Example 3.13.1 Light extraction from a bare LED chip 257
3.14 LED Efficiencies and Luminous Flux 258
Example 3.14.1 LED efficiencies 260
Example 3.14.2 LED brightness 261
3.15 Basic LED Characteristics 261
3.16 LEDs for Optical Fiber Communications 262
3.17 Phosphors and White LEDs 265
Additional Topics 267
3.18 LED Electronics 267
Questions and Problems 270
Chapter 4 Stimulated Emission Devices: Optical Amplifiers and Lasers 281
4.1 Stimulated Emission, Photon Amplification, and Lasers 281
A. Stimulated Emission and Population Inversion 281
B. Photon Amplification and Laser Principles 282
C. Four-Level Laser System 285
4.2 Stimulated Emission Rate and Emission Cross-Section 286
A. Stimulated Emission and Einstein Coefficients 286
Example 4.2.1 Minimum pumping power for three-level laser systems 288
B. Emission and Absorption Cross-Sections 289
Example 4.2.2 Gain coefficient in a Nd3-doped glass fiber 291
4.3 Erbium-Doped Fiber Amplifiers 292
A. Principle of Operation and Amplifier Configurations 292
B. EDFA Characteristics, Efficiency, and Gain Saturation 296
Example 4.3.1 An erbium-doped fiber amplifier 299
C. Gain-Flattened EDFAs and Noise Figure 300
4.4 Gas Lasers: The He-Ne Laser 303
Example 4.4.1 Efficiency of the He-Ne laser 306
4.5 The Output Spectrum of a Gas Laser 306
Example 4.5.1 Doppler broadened linewidth 309
4.6 Laser Oscillations: Threshold Gain Coefficient
and Gain Bandwidth 311
A. Optical Gain Coefficient g 311
B. Threshold Gain Coefficient gth and Output Power 312
Example 4.6.1 Threshold population inversion for the He-Ne laser 315
C. Output Power and Photon Lifetime in the Cavity 315
Example 4.6.2 Output power and photon cavity lifetime Tph 317
D. Optical Cavity, Phase Condition, Laser Modes 317
4.7 Broadening of the Optical Gain Curve and Linewidth 319
4.8 Pulsed Lasers: Q-Switching and Mode Locking 323
A. Q-Switching 323
B. Mode Locking 326
4.9 Principle of the Laser Diode 327
4.10 Heterostructure Laser Diodes 331
Example 4.10.1 Modes in a semiconductor laser and the optical
cavity length 336
4.11 Quantum Well Devices 337
Example 4.11.1 A GaAs quantum well 339
4.12 Elementary Laser Diode Characteristics 340
Example 4.12.1 Laser output wavelength variation with temperature 346
Example 4.12.2 Laser diode efficiencies for a sky-blue LD 346
Example 4.12.3 Laser diode efficiencies 347
4.13 Steady State Semiconductor Rate Equations:
The Laser Diode Equation 348
A. Laser Diode Equation 348
B. Optical Gain Curve, Threshold, and Transparency
Conditions 351
Example 4.13.1 Threshold current and optical output power from
a Fabry–Perot heterostructure laser diode 352
4.14 Single Frequency Semiconductor Lasers 354
A. Distributed Bragg Reflector LDs 354
B. Distributed Feedback LDs 355
C. External Cavity LDs 358
Example 4.14.1 DFB LD wavelength 360
4.15 Vertical Cavity Surface Emitting Lasers 360
4.16 Semiconductor Optical Amplifiers 364
Additional Topics 366
4.17 Superluminescent and Resonant Cavity Leds:
SLD and Rcled 366
4.18 Direct Modulation of Laser Diodes 367
4.19 Holography 370
Questions and Problems 373
Chapter 5 Photodetectors and Image Sensors 381
5.1 Principle of the pn Junction Photodiode 381
A. Basic Principles 381
B. Energy Band Diagrams and Photodetection Modes 383
C. Current-Voltage Convention and Modes of Operation 385
5.2 Shockley–Ramo Theorem and External Photocurrent 386
5.3 Absorption Coefficient and Photodetector Materials 388
5.4 Quantum Efficiency and Responsivity 391
Example 5.4.1 Quantum efficiency and responsivity 394
Example 5.4.2 Maximum quantum efficiency 395
5.5 The pin Photodiode 395
Example 5.5.1 Operation and speed of a pin photodiode 399
Example 5.5.2 Photocarrier diffusion in a pin photodiode 399
Example 5.5.3 Responsivity of a pin photodiode 400
Example 5.5.4 Steady state photocurrent in the pin photodiode 401
5.6 Avalanche Photodiode 402
A. Principles and Device Structures 402
Example 5.6.1 InGaAs APD responsivity 406
Example 5.6.2 Silicon APD 406
B. Impact Ionization and Avalanche Multiplication 406
Example 5.6.3 Avalanche multiplication in Si APDs 408
5.7 Heterojunction Photodiodes 409
A. Separate Absorption and Multiplication APD 409
B. Superlattice APDs 411
5.8 Schottky Junction Photodetector 413
5.9 Phototransistors 417
5.10 Photoconductive Detectors and Photoconductive
Gain 418
5.11 Basic Photodiode Circuits 421
5.12 Noise in Photodetectors 424
A. The pn Junction and pin Photodiodes 424
Example 5.12.1 NEP of a Si pin photodiode 428
Example 5.12.2 Noise of an ideal photodetector 428
Example 5.12.3 SNR of a receiver 429
B. Avalanche Noise in the APD 430
Example 5.12.4 Noise in an APD 430
5.13 Image Sensors 431
A. Basic Principles 431
B. Active Matrix Array and CMOS Image Sensors 433
C. Charge-Coupled Devices 435
Additional Topics 437
5.14 Photovoltaic Devices: Solar Cells 437
A. Basic Principles 437
B. Operating Current and Voltage and Fill Factor 439
C. Equivalent Circuit of a Solar Cell 440
D. Solar Cell Structures and Efficiencies 442
Example 5.14.1 Solar cell driving a load 444
Example 5.14.2 Open circuit voltage and short circuit current 445
Questions and Problems 445
Chapter 6 Polarization and Modulation of Light 457
6.1 Polarization 457
A. State of Polarization 457
Example 6.1.1 Elliptical and circular polarization 460
B. Malus’s Law 460
6.2 Light Propagation in an Anisotropic Medium:
Birefringence 461
A. Optical Anisotropy 461
B. Uniaxial Crystals and Fresnel’s Optical Indicatrix 463
C. Birefringence of Calcite 466
D. Dichroism 467
6.3 Birefringent Optical Devices 468
A. Retarding Plates 468
Example 6.3.1 Quartz-half wave plate 469
Example 6.3.2 Circular polarization from linear polarization 470
B. Soleil–Babinet Compensator 470
C. Birefringent Prisms 471
6.4 Optical Activity and Circular Birefringence 472
6.5 Liquid Crystal Displays 474
6.6 Electro-Optic Effects 478
A. Definitions 478
B. Pockels Effect 479
Example 6.6.1 Pockels Cell Modulator 484
C. Kerr Effect 484
Example 6.6.2 Kerr Effect Modulator 486
6.7 Integrated Optical Modulators 486
A. Phase and Polarization Modulation 486
B. Mach–Zehnder Modulator 487
C. Coupled Waveguide Modulators 489
Example 6.7.1 Modulated Directional Coupler 492
6.8 Acousto-Optic Modulator 492
A. Photoelastic Effect and Principles 492
B. Acousto-Optic Modulators 494
Example 6.8.1 AO Modulator 499
6.9 Faraday Rotation and Optical Isolators 499
Example 6.9.1 Faraday rotation 500
6.10 Nonlinear Optics and Second Harmonic Generation 501
Additional Topics 505
6.11 Jones Vectors 505
Questions and Problems 506
Appendices
Appendix AGaussian
Distribution 514
Appendix B Solid Angles 516
Appendix C Basic Radiometry and Photometry 518
Appendix DUseful
Mathematical Formulae 521
Appendix ENotation
and Abbreviations 523
Index 535