低維材料及其界面的熱輸運機制與模型研究

低維材料及其界面的熱輸運機制與模型研究

《低維材料及其界面的熱輸運機制與模型研究》2019年10月清華大學出版社出版的圖書,作者是王艷磊。

基本介紹

  • 中文名:低維材料及其界面的熱輸運機制與模型研究
  • 作者:王艷磊
  • 出版社:清華大學出版社
  • 出版時間:2019年10月
  • 定價:89 元
  • ISBN:9787302532675
內容簡介,圖書目錄,

內容簡介

本書是作者在其博士學位論文的基礎上總結、改進、提煉而形成的學術著作。本書通過運用大規模分子動力學模擬與理論分析相結合的方法,重點研究了石墨烯等低維材料中缺陷、無序度、弱耦合界面和強耦合界面等因素影響熱輸運過程的微觀機制,進而基於分子動力學模擬的結果構建了適用於不同低維體系的預測熱輸運過程的理論模型,促進了對低維材料熱輸運過程的合理理解,可為微納米電子器件熱管理、新型相變傳熱材料設計等提供一定的科學參考依據和新思路。
本書可供微納米材料與器件設計領域相關的學者和科研人員參考。

圖書目錄

第1章緒論
1.1課題背景及研究意義
1.2研究概況
1.2.1國內外研究動態
1.2.2問題與挑戰
1.3研究方法簡介
1.3.1第一性原理計算方法
1.3.2MD模擬
1.3.3熱導率的數值計算
1.4本書的主要內容
第2章缺陷的散射機制與有效介質理論
2.1本章引論
2.2多晶石墨烯的原子結構及熱導率的計算方法
2.2.1多晶石墨烯的原子結構
2.2.2熱導率的計算方法
2.3多晶石墨烯熱導率的計算結果
2.4多晶石墨烯的熱流散射機制
2.5有效介質理論及其在多晶石墨烯中的套用
2.5.1巨觀晶粒尺寸的多晶石墨烯的熱導率
2.5.2多晶石墨烯熱輸運的溫度依賴性
2.6有效介質理論在GO中的套用
2.7本章小結
第3章無序度與振動模態局域化
3.1本章引論
3.2二維雙層二氧化矽的結構與計算方法
3.2.1二維雙層二氧化矽的原子結構
3.2.2熱導率的計算方法
3.3晶體和非晶的二維雙層二氧化矽的熱輸運
3.4振動模態的局域化及相關的理論研究
3.4.1AllenFeldman理論
3.4.2低維材料中振動模態的局域化
3.4.3低維材料中熱流的局域化
3.4.4局部無序材料的熱輸運模型的討論
3.5本章小結
第4章弱耦合界面與擴散式輸運模型
4.1本章引論
4.2石墨烯/銅基底界面與擴散式熱輸運過程
4.2.1石墨烯/銅基底界面的構建與結構最佳化
4.2.2石墨烯在基底上的形貌及水分子插層的影響
4.2.3水分子插層有效減弱界面的電學耦合
4.2.4擴散式熱輸運機制與水分子插層的影響
4.3石墨烯/細胞膜界面與擴散式熱輸運模型
4.3.1石墨烯/生物界面的原子結構
4.3.2石墨烯/細胞膜界面的水分子層結構
4.3.3石墨烯/細胞膜界面的熱耗散過程
4.3.4擴散式熱輸運機制與生物納米界面的熱耗散模型
4.4關於水分子插層及擴散式輸運機制的討論
4.5本章小結
第5章強耦合分子界面的熱輸運研究
5.1本章引論
5.2苯環分子結界面的熱輸運機制與熱穩定性
5.2.1苯環分子結的原子模型與界面熱阻計算方法
5.2.2單分子結的熱輸運過程
5.2.3分子結的熱耗散與熱穩定性
5.2.4苯環分子結界面的熱輸運機制
5.3SAM/金剛石分子結界面的熱輸運機制
5.3.1SAM/金剛石分子結模型與界面熱導的計算方法
5.3.2SAM分子結界面的熱輸運機制
5.3.3影響SAM分子結界面熱輸運性質的其他因素
5.3.4SAM作為熱界面材料的套用前景
5.4強耦合分子界面的熱輸運機制討論
5.5本章小結
第6章總結與展望
參考文獻附錄A與本書有關的物理常數及換算因子附錄B振動態密度求解程式附錄C振動譜能量密度求解程式附錄D熱導率求解程式附錄E作者發表的相關文章致謝
Contents低維材料及其界面的熱輸運機制與模型研究
Contents
Chapter 1Introductions
1.1Background and Significance of the Research
1.2Research Situation
1.2.1Reseach Trends at Home and Abroad
1.2.2Problems and Challenges
1.3Brief Introduction of Research Methods
1.3.1FirstPrinciples Methods
1.3.2Molecular Dynamics Simulation
1.3.3Numerical Calculations of Thermal Conductivity
1.4The Main Contents of This Book
Chapter 2The Scattering Mechanism of Defects and the Theory of
Effective Medium
2.1The Introduction of This Chapter
2.2The Atomic Structure of Polycrystalline Graphene and the
Method of Calculating Thermal Conductivity
2.2.1The Atomic Structure of Polycrystalline Graphene
2.2.2The Method of Calculating Thermal Conductivity
2.3The Simulated Results of Polycrystalline Graphene Thermal
Conductivity
2.4Heat Flow Scattering Mechanism of Polycrystalline Graphene
2.5Effective Medium Theory and Its Application in Polycrystalline
Graphene
2.5.1The Thermal Conductivity of Polycrystalline
Graphene with Macroscopic Grain Size
2.5.2Temperature Dependence of Heat Transport of
Polycrystalline Graphene
2.6Applications of Effective Medium Theory in Graphene Oxide
2.7Chapter Summary
Chapter 3Disorder Degree and Vibration Mode Localization
3.1The Introduction of This Chapter
3.2Structure and Calculation Method of TwoDimensional
Bilayer Silica
3.2.1Atomic Structure of TwoDimensional Bilayer Silica
3.2.2The Calculation Method of Thermal Conductivity
3.3Thermal Transports of Crystalline and Amorphous
TwoDimensional Bilayer Silica
3.4Theoretical Study of Localization and Correlation of
Vibration Modes
3.4.1AllenFeldman Theory
3.4.2Localization of Vibration Modes in Low Dimensional
Materials
3.4.3Localization of Heat Flow in Low Dimensional
Materials
3.4.4Discussion on the Thermal Transport Model of
Local Disordered Materials
3.5Chapter Summary
Chapter 4Weak Coupling Interfaces and Diffusional Models of Transport
4.1The Introduction of This Chapter
4.2The Interface of Graphene/Copper Substrate and the Process
of Diffusional Heat Transport
4.2.1Construction and Structure Optimization of the
Interface of Graphene/Copper Substrate
4.2.2The Morphology of Graphene on Substrate and
Effects of the Intercalation of Water Molecules
4.2.3The Intercalation of Water Molecules Effectively
Weaken the Electrical Coupling of the Interface
4.2.4Diffusional Heat Transport Mechanism and Effects
of the Intercalation of Water Molecules
4.3The Interface of Graphene/Cell Membrane and the Model of
Diffusional Heat Transport
4.3.1The Atomic Structure of the Interface of Graphene/
Biology
4.3.2The Water Molecular Layer Structure of the Interface
of Graphene/Cell Membrane
4.3.3The Heat Dissipation Process of the Interface of
Graphene/Cell Membrane
4.3.4Diffusional Heat Transport Mechanism and Heat
Dissipation Models of Biological Nano Interfaces
4.4Discussion on the Intercalation of Water Molecules and
Diffusional Heat Transport Mechanism
4.5Chapter Summary
Chapter 5Study on Heat Transfer of Strongly Coupled Molecular
Interfaces
5.1The Introduction of This Chapter
5.2The Heat Transport Mechanism and the Thermal Stability
of Molecular Junction Interface of Benzene Ring
5.2.1The Atomic Model of Molecular Junction of Benzene
Ring and the Calculation Method of the Thermal
Resistance of the Interface
5.2.2The Heat Transport Process of Single Molecular
Junction
5.2.3The Heat Dissipation and Thermal Stability of
Molecular Junction
5.2.4The Heat Transport Mechanism of Molecular Junction
Interface
5.3The Heat Transport Mechanism of Molecular Junction Interface
of SAM/Diamond
5.3.1The Molecular Junction Model of SAM/Diamond
and the Calculation Method of Interface Thermal
Conductivity
5.3.2The Heat Transport Mechanism of Molecular
Junction Interface of SAM
5.3.3Other Influential Factors of the Heat Transport
Mechanism of Molecular Junction Interface of SAM
5.3.4Application Prospect of SAM as a Thermal Interface
Material
5.4Discussion on the Heat Transport Mechanism of Strongly
Coupled Molecular Interfaces
5.5Chapter Summary
Chapter 6Summary and Outlook
References
Appendix APhysical Constants and Conversion Factors Related to
This BookAppendix BThe Solving Program for Vibrational Density of StatesAppendix CThe Solving Program for Energy Density of Vibrational
SpectrumAppendix DThe Solving Program for Thermal ConductivityArticles Related to This Book Published by the AuthorAcknowledgements

相關詞條

熱門詞條

聯絡我們