《人工智慧驅動的機制設計(英文版)》是2023年清華大學出版社出版的圖書,作者是沈蔚然、唐平中、左淞。
基本介紹
- 中文名:人工智慧驅動的機制設計(英文版)
- 作者:沈蔚然、唐平中、左淞
- 出版時間:2023年10月1日
- 出版社:清華大學出版社
- ISBN:9787302632832
- 定價:79 元
內容簡介,圖書目錄,
內容簡介
《人工智慧驅動的機制設計(英文版)》結合人工智慧相關技術與機制設計理論,提出人工智慧驅動的機制設計框架,以提供一種替代方法來處理目前機制設計理論與實踐中的一些問題。該框架包含兩個互相互動的抽象模型:智慧型體模型和機制模型。結合人工智慧與機制設計,我們可以解決利用單一領域技術無法解決的問題。例如,我們可以極大縮小機制搜尋空間,構建更現實的買家模型,以及更好地平衡各類目標。我們從多物品拍賣,動態拍賣,以及多目標拍賣三個場景入手,分析並說明該框架對理論與實踐均有幫助。
圖書目錄
Contents
Chapter 1 Introduction 1
1.1 Mechanism Design 2
1.1.1 Social Choice Function 2
1.1.2 Mechanism 2
1.1.3 Implementation 3
1.1.4 Revelation Principle 4
1.1.5 Efficient Mechanisms 5
1.2 Auctions 7
1.3 Why AI-Driven 11
1.3.1 Challenges in Auction Design 11
1.3.2 The AI-Driven Framework 12
1.4 Organization of the Book 13
References 14
Chapter 2 Multi-Dimensional Mechanism Design via AI-Driven Approaches 16
2.1 Recovering Optimal Mechanisms with Simple Neural Networks 16
2.1.1 Background 17
2.1.2 Setting 19
2.1.3 Revisiting the Na\i ve Mechanism 21
2.1.4 Network Structure of MenuNet 24
2.1.5 Recovering Known Results 27
2.2 Discovering Unknown Optimal Mechanisms 30
2.2.1 Experiment Results 31
2.2.2 Theoretic Analysis and Formal Proofs 34
2.3 Performance 52
References 56
Chapter 3 Dynamic Mechanism Design via AI-Driven Approaches 59
3.1 Dynamic Cost-Per-Action Auctions with Ex-Post IR Guarantees 60
3.1.1 Background 60
3.1.2 Our Contributions 62
3.1.3 Related Works 63
3.1.4 Setting and Preliminaries 64
3.1.5 Mechanisms 70
3.1.6 Truthfulness and Implementation 74
3.1.7 Impossibility Result 80
3.2 Dynamic Reserve Pricing via Reinforcement Mechanism Design 80
3.2.1 Background 81
3.2.2 Settings and Preliminaries 86
3.2.3 Bidder Behavior Model 88
3.2.4 Dynamic Mechanism Design as Markov Decision Process 93
References 103
Chapter 4 Multi-Objective Mechanism Design via AI-Driven Approaches 109
4.1 Balancing Objectives through Approximation Analysis 110
4.1.1 Background 110
4.1.2 Settings and Preliminaries 113
4.1.3 Generalized Virtual-Efficient Mechanisms 114
4.1.4 Experiments 126
4.2 Balancing Objectives through Machine Learning 128
4.2.1 Background 129
4.2.2 Market Clearing Loss 132
4.2.3 Theoretical Guarantees 138
4.2.4 Empirical Evaluation 140
References 146
Chapter 5 Summary and Future Directions 151
References 153